Re-added missing joined variable

This commit is contained in:
apolygon 2023-03-06 18:48:39 -08:00
parent 0f31c34120
commit 7c9f55b1de

View File

@ -42,8 +42,6 @@ WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"]
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"] WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"] WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band'] #, 'bigvgan_24khz_100band']
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ] EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
args = None args = None
@ -985,9 +983,6 @@ def run_training(config_path, verbose=False, gpus=1, keep_x_past_datasets=0, pro
global training_state global training_state
if training_state and training_state.process: if training_state and training_state.process:
return "Training already in progress" return "Training already in progress"
# ensure we have the dvae.pth
get_model_path('dvae.pth')
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process # I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support() torch.multiprocessing.freeze_support()
@ -1198,6 +1193,10 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, progres
with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f: with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(results, indent='\t')) f.write(json.dumps(results, indent='\t'))
joined = '\n'.join(transcription)
with open(f'{outdir}/train.txt', 'w', encoding="utf-8") as f:
f.write(joined)
unload_whisper() unload_whisper()
return f"Processed dataset to: {outdir}\n{joined}" return f"Processed dataset to: {outdir}\n{joined}"
@ -1544,7 +1543,7 @@ def setup_args():
'defer-tts-load': False, 'defer-tts-load': False,
'device-override': None, 'device-override': None,
'prune-nonfinal-outputs': True, 'prune-nonfinal-outputs': True,
'vocoder-model': VOCODERS[-1], 'use-bigvgan-vocoder': True,
'concurrency-count': 2, 'concurrency-count': 2,
'autocalculate-voice-chunk-duration-size': 0, 'autocalculate-voice-chunk-duration-size': 0,
'output-sample-rate': 44100, 'output-sample-rate': 44100,
@ -1581,7 +1580,7 @@ def setup_args():
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)") parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model") parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation") parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use") parser.add_argument("--use-bigvgan-vocoder", default=default_arguments['use-bigvgan-vocoder'], action='store_true', help="Uses BigVGAN in place of the default vocoder")
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch") parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass") parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once") parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
@ -1625,7 +1624,7 @@ def setup_args():
return args return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, vocoder_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ): def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
global args global args
args.listen = listen args.listen = listen
@ -1636,6 +1635,7 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
args.defer_tts_load = defer_tts_load args.defer_tts_load = defer_tts_load
args.prune_nonfinal_outputs = prune_nonfinal_outputs args.prune_nonfinal_outputs = prune_nonfinal_outputs
args.use_bigvgan_vocoder = use_bigvgan_vocoder
args.device_override = device_override args.device_override = device_override
args.sample_batch_size = sample_batch_size args.sample_batch_size = sample_batch_size
args.embed_output_metadata = embed_output_metadata args.embed_output_metadata = embed_output_metadata
@ -1648,7 +1648,6 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
args.output_volume = output_volume args.output_volume = output_volume
args.autoregressive_model = autoregressive_model args.autoregressive_model = autoregressive_model
args.vocoder_model = vocoder_model
args.whisper_backend = whisper_backend args.whisper_backend = whisper_backend
args.whisper_model = whisper_model args.whisper_model = whisper_model
@ -1668,6 +1667,7 @@ def save_args_settings():
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents, 'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
'defer-tts-load': args.defer_tts_load, 'defer-tts-load': args.defer_tts_load,
'prune-nonfinal-outputs': args.prune_nonfinal_outputs, 'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
'use-bigvgan-vocoder': args.use_bigvgan_vocoder,
'device-override': args.device_override, 'device-override': args.device_override,
'sample-batch-size': args.sample_batch_size, 'sample-batch-size': args.sample_batch_size,
'embed-output-metadata': args.embed_output_metadata, 'embed-output-metadata': args.embed_output_metadata,
@ -1680,7 +1680,6 @@ def save_args_settings():
'output-volume': args.output_volume, 'output-volume': args.output_volume,
'autoregressive-model': args.autoregressive_model, 'autoregressive-model': args.autoregressive_model,
'vocoder-model': args.vocoder_model,
'whisper-backend': args.whisper_backend, 'whisper-backend': args.whisper_backend,
'whisper-model': args.whisper_model, 'whisper-model': args.whisper_model,
@ -1796,11 +1795,11 @@ def load_tts( restart=False, model=None ):
if model: if model:
args.autoregressive_model = model args.autoregressive_model = model
print(f"Loading TorToiSe... (AR: {args.autoregressive_model}, vocoder: {args.vocoder_model})") print(f"Loading TorToiSe... (using model: {args.autoregressive_model})")
tts_loading = True tts_loading = True
try: try:
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model, vocoder_model=args.vocoder_model) tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
except Exception as e: except Exception as e:
tts = TextToSpeech(minor_optimizations=not args.low_vram) tts = TextToSpeech(minor_optimizations=not args.low_vram)
load_autoregressive_model(args.autoregressive_model) load_autoregressive_model(args.autoregressive_model)
@ -1848,32 +1847,35 @@ def update_autoregressive_model(autoregressive_model_path):
return return
print(f"Loading model: {autoregressive_model_path}") print(f"Loading model: {autoregressive_model_path}")
tts.load_autoregressive_model(autoregressive_model_path)
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(autoregressive_model_path):
tts.load_autoregressive_model(autoregressive_model_path)
# polyfill in case a user did NOT update the packages
# this shouldn't happen anymore, as I just clone mrq/tortoise-tts, and inject it into sys.path
else:
from tortoise.models.autoregressive import UnifiedVoice
tts.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', tts.models_dir)
del tts.autoregressive
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False).cpu().eval()
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
if tts.preloaded_tensors:
tts.autoregressive = tts.autoregressive.to(tts.device)
if not hasattr(tts, 'autoregressive_model_hash'):
tts.autoregressive_model_hash = hash_file(autoregressive_model_path)
print(f"Loaded model: {tts.autoregressive_model_path}") print(f"Loaded model: {tts.autoregressive_model_path}")
do_gc() do_gc()
return autoregressive_model_path return autoregressive_model_path
def update_vocoder_model(vocoder_model):
args.vocoder_model = vocoder_model
save_args_settings()
print(f'Stored vocoder model to settings: {vocoder_model}')
global tts
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
return
print(f"Loading model: {vocoder_model}")
tts.load_vocoder_model(vocoder_model)
print(f"Loaded model: {tts.vocoder_model}")
do_gc()
return vocoder_model
def load_voicefixer(restart=False): def load_voicefixer(restart=False):
global voicefixer global voicefixer