forked from mrq/tortoise-tts
144 lines
4.9 KiB
Python
144 lines
4.9 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from torch import einsum
|
||
|
from torch.utils.checkpoint import checkpoint
|
||
|
|
||
|
from models.arch_util import AttentionBlock
|
||
|
from models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||
|
|
||
|
|
||
|
def exists(val):
|
||
|
return val is not None
|
||
|
|
||
|
|
||
|
def masked_mean(t, mask):
|
||
|
t = t.masked_fill(~mask, 0.)
|
||
|
return t.sum(dim=1) / mask.sum(dim=1)
|
||
|
|
||
|
|
||
|
class CollapsingTransformer(nn.Module):
|
||
|
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
|
||
|
super().__init__()
|
||
|
self.transformer = ContinuousTransformerWrapper(
|
||
|
max_seq_len=-1,
|
||
|
use_pos_emb=False,
|
||
|
attn_layers=Encoder(
|
||
|
dim=model_dim,
|
||
|
depth=depth,
|
||
|
heads=heads,
|
||
|
ff_dropout=dropout,
|
||
|
ff_mult=1,
|
||
|
attn_dropout=dropout,
|
||
|
use_rmsnorm=True,
|
||
|
ff_glu=True,
|
||
|
rotary_pos_emb=True,
|
||
|
**encoder_kwargs,
|
||
|
))
|
||
|
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
|
||
|
AttentionBlock(
|
||
|
output_dims, num_heads=heads, do_checkpoint=False),
|
||
|
nn.Conv1d(output_dims, output_dims, 1))
|
||
|
self.mask_percentage = mask_percentage
|
||
|
|
||
|
def forward(self, x, **transformer_kwargs):
|
||
|
h = self.transformer(x, **transformer_kwargs)
|
||
|
h = h.permute(0, 2, 1)
|
||
|
h = checkpoint(self.pre_combiner, h).permute(0, 2, 1)
|
||
|
if self.training:
|
||
|
mask = torch.rand_like(h.float()) > self.mask_percentage
|
||
|
else:
|
||
|
mask = torch.ones_like(h.float()).bool()
|
||
|
return masked_mean(h, mask)
|
||
|
|
||
|
|
||
|
class ConvFormatEmbedding(nn.Module):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__()
|
||
|
self.emb = nn.Embedding(*args, **kwargs)
|
||
|
|
||
|
def forward(self, x):
|
||
|
y = self.emb(x)
|
||
|
return y.permute(0, 2, 1)
|
||
|
|
||
|
|
||
|
class CVVP(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_dim=512,
|
||
|
transformer_heads=8,
|
||
|
dropout=.1,
|
||
|
conditioning_enc_depth=8,
|
||
|
cond_mask_percentage=0,
|
||
|
mel_channels=80,
|
||
|
mel_codes=None,
|
||
|
speech_enc_depth=8,
|
||
|
speech_mask_percentage=0,
|
||
|
latent_multiplier=1,
|
||
|
):
|
||
|
super().__init__()
|
||
|
latent_dim = latent_multiplier*model_dim
|
||
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
||
|
|
||
|
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
|
||
|
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
|
||
|
self.conditioning_transformer = CollapsingTransformer(
|
||
|
model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
|
||
|
self.to_conditioning_latent = nn.Linear(
|
||
|
latent_dim, latent_dim, bias=False)
|
||
|
|
||
|
if mel_codes is None:
|
||
|
self.speech_emb = nn.Conv1d(
|
||
|
mel_channels, model_dim, kernel_size=5, padding=2)
|
||
|
else:
|
||
|
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
|
||
|
self.speech_transformer = CollapsingTransformer(
|
||
|
model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
|
||
|
self.to_speech_latent = nn.Linear(
|
||
|
latent_dim, latent_dim, bias=False)
|
||
|
|
||
|
def get_grad_norm_parameter_groups(self):
|
||
|
return {
|
||
|
'conditioning': list(self.conditioning_transformer.parameters()),
|
||
|
'speech': list(self.speech_transformer.parameters()),
|
||
|
}
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
mel_cond,
|
||
|
mel_input,
|
||
|
return_loss=False
|
||
|
):
|
||
|
cond_emb = self.cond_emb(mel_cond).permute(0, 2, 1)
|
||
|
enc_cond = self.conditioning_transformer(cond_emb)
|
||
|
cond_latents = self.to_conditioning_latent(enc_cond)
|
||
|
|
||
|
speech_emb = self.speech_emb(mel_input).permute(0, 2, 1)
|
||
|
enc_speech = self.speech_transformer(speech_emb)
|
||
|
speech_latents = self.to_speech_latent(enc_speech)
|
||
|
|
||
|
cond_latents, speech_latents = map(lambda t: F.normalize(
|
||
|
t, p=2, dim=-1), (cond_latents, speech_latents))
|
||
|
temp = self.temperature.exp()
|
||
|
|
||
|
if not return_loss:
|
||
|
sim = einsum('n d, n d -> n', cond_latents,
|
||
|
speech_latents) * temp
|
||
|
return sim
|
||
|
|
||
|
sim = einsum('i d, j d -> i j', cond_latents,
|
||
|
speech_latents) * temp
|
||
|
labels = torch.arange(
|
||
|
cond_latents.shape[0], device=mel_input.device)
|
||
|
loss = (F.cross_entropy(sim, labels) +
|
||
|
F.cross_entropy(sim.t(), labels)) / 2
|
||
|
|
||
|
return loss
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
clvp = CVVP()
|
||
|
clvp(torch.randn(2, 80, 100),
|
||
|
torch.randn(2, 80, 95),
|
||
|
return_loss=True)
|