import os if 'XDG_CACHE_HOME' not in os.environ: os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/')) if 'TORTOISE_MODELS_DIR' not in os.environ: os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/')) if 'TRANSFORMERS_CACHE' not in os.environ: os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/')) import argparse import time import json import base64 import re import urllib.request import torch import torchaudio import music_tag import gradio as gr import gradio.utils from datetime import datetime from tortoise.api import TextToSpeech from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir from tortoise.utils.text import split_and_recombine_text from tortoise.utils.device import get_device_name, set_device_name args = None tts = None webui = None voicefixer = None whisper = None dlas = None def get_args(): global args return args def setup_args(): global args default_arguments = { 'share': False, 'listen': None, 'check-for-updates': False, 'models-from-local-only': False, 'low-vram': False, 'sample-batch-size': None, 'embed-output-metadata': True, 'latents-lean-and-mean': True, 'voice-fixer': True, 'voice-fixer-use-cuda': True, 'force-cpu-for-conditioning-latents': False, 'device-override': None, 'concurrency-count': 2, 'output-sample-rate': 44100, 'output-volume': 1, } if os.path.isfile('./config/exec.json'): with open(f'./config/exec.json', 'r', encoding="utf-8") as f: overrides = json.load(f) for k in overrides: default_arguments[k] = overrides[k] parser = argparse.ArgumentParser() parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere") parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on") parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup") parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models") parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage") parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)") parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.") parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.") parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.") parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)") parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch") parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass") parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once") parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)") parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output") args = parser.parse_args() args.embed_output_metadata = not args.no_embed_output_metadata set_device_name(args.device_override) args.listen_host = None args.listen_port = None args.listen_path = None if args.listen: try: match = re.findall(r"^(?:(.+?):(\d+))?(\/.+?)?$", args.listen)[0] args.listen_host = match[0] if match[0] != "" else "127.0.0.1" args.listen_port = match[1] if match[1] != "" else None args.listen_path = match[2] if match[2] != "" else "/" except Exception as e: pass if args.listen_port is not None: args.listen_port = int(args.listen_port) return args def generate( text, delimiter, emotion, prompt, voice, mic_audio, voice_latents_chunks, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, breathing_room, cvvp_weight, top_p, diffusion_temperature, length_penalty, repetition_penalty, cond_free_k, experimental_checkboxes, progress=None ): global args global tts try: tts except NameError: raise gr.Error("TTS is still initializing...") if voice != "microphone": voices = [voice] else: voices = [] if voice == "microphone": if mic_audio is None: raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input") mic = load_audio(mic_audio, tts.input_sample_rate) voice_samples, conditioning_latents = [mic], None elif voice == "random": voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents() else: progress(0, desc="Loading voice...") voice_samples, conditioning_latents = load_voice(voice) if voice_samples is not None: sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu() conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents) if len(conditioning_latents) == 4: conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None) if voice != "microphone": torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth') voice_samples = None else: if conditioning_latents is not None: sample_voice, _ = load_voice(voice, load_latents=False) sample_voice = torch.cat(sample_voice, dim=-1).squeeze().cpu() else: sample_voice = None if seed == 0: seed = None if conditioning_latents is not None and len(conditioning_latents) == 2 and cvvp_weight > 0: print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents.") cvvp_weight = 0 settings = { 'temperature': float(temperature), 'top_p': float(top_p), 'diffusion_temperature': float(diffusion_temperature), 'length_penalty': float(length_penalty), 'repetition_penalty': float(repetition_penalty), 'cond_free_k': float(cond_free_k), 'num_autoregressive_samples': num_autoregressive_samples, 'sample_batch_size': args.sample_batch_size, 'diffusion_iterations': diffusion_iterations, 'voice_samples': voice_samples, 'conditioning_latents': conditioning_latents, 'use_deterministic_seed': seed, 'return_deterministic_state': True, 'k': candidates, 'diffusion_sampler': diffusion_sampler, 'breathing_room': breathing_room, 'progress': progress, 'half_p': "Half Precision" in experimental_checkboxes, 'cond_free': "Conditioning-Free" in experimental_checkboxes, 'cvvp_amount': cvvp_weight, } if delimiter == "\\n": delimiter = "\n" if delimiter != "" and delimiter in text: texts = text.split(delimiter) else: texts = split_and_recombine_text(text) full_start_time = time.time() outdir = f"./results/{voice}/" os.makedirs(outdir, exist_ok=True) audio_cache = {} resample = None # not a ternary in the event for some reason I want to rely on librosa's upsampling interpolator rather than torchaudio's, for some reason if tts.output_sample_rate != args.output_sample_rate: resampler = torchaudio.transforms.Resample( tts.output_sample_rate, args.output_sample_rate, lowpass_filter_width=16, rolloff=0.85, resampling_method="kaiser_window", beta=8.555504641634386, ) volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None idx = 0 idx_cache = {} for i, file in enumerate(os.listdir(outdir)): filename = os.path.basename(file) extension = os.path.splitext(filename)[1] if extension != ".json" and extension != ".wav": continue match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename) key = int(match[0]) idx_cache[key] = True if len(idx_cache) > 0: keys = sorted(list(idx_cache.keys())) idx = keys[-1] + 1 # I know there's something to pad I don't care pad = "" for i in range(4,0,-1): if idx < 10 ** i: pad = f"{pad}0" idx = f"{pad}{idx}" def get_name(line=0, candidate=0, combined=False): name = f"{idx}" if combined: name = f"{name}_combined" elif len(texts) > 1: name = f"{name}_{line}" if candidates > 1: name = f"{name}_{candidate}" return name for line, cut_text in enumerate(texts): if emotion == "Custom": if prompt.strip() != "": cut_text = f"[{prompt},] {cut_text}" else: cut_text = f"[I am really {emotion.lower()},] {cut_text}" progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]' print(f"{progress.msg_prefix} Generating line: {cut_text}") start_time = time.time() gen, additionals = tts.tts(cut_text, **settings ) seed = additionals[0] run_time = time.time()-start_time print(f"Generating line took {run_time} seconds") if not isinstance(gen, list): gen = [gen] for j, g in enumerate(gen): audio = g.squeeze(0).cpu() name = get_name(line=line, candidate=j) audio_cache[name] = { 'audio': audio, 'text': cut_text, 'time': run_time } # save here in case some error happens mid-batch torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate) for k in audio_cache: audio = audio_cache[k]['audio'] if resampler is not None: audio = resampler(audio) if volume_adjust is not None: audio = volume_adjust(audio) audio_cache[k]['audio'] = audio torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate) output_voices = [] for candidate in range(candidates): if len(texts) > 1: audio_clips = [] for line in range(len(texts)): name = get_name(line=line, candidate=candidate) audio = audio_cache[name]['audio'] audio_clips.append(audio) name = get_name(candidate=candidate, combined=True) audio = torch.cat(audio_clips, dim=-1) torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate) audio = audio.squeeze(0).cpu() audio_cache[name] = { 'audio': audio, 'text': text, 'time': time.time()-full_start_time, 'output': True } else: name = get_name(candidate=candidate) audio_cache[name]['output'] = True info = { 'text': text, 'delimiter': '\\n' if delimiter == "\n" else delimiter, 'emotion': emotion, 'prompt': prompt, 'voice': voice, 'seed': seed, 'candidates': candidates, 'num_autoregressive_samples': num_autoregressive_samples, 'diffusion_iterations': diffusion_iterations, 'temperature': temperature, 'diffusion_sampler': diffusion_sampler, 'breathing_room': breathing_room, 'cvvp_weight': cvvp_weight, 'top_p': top_p, 'diffusion_temperature': diffusion_temperature, 'length_penalty': length_penalty, 'repetition_penalty': repetition_penalty, 'cond_free_k': cond_free_k, 'experimentals': experimental_checkboxes, 'time': time.time()-full_start_time, } # kludgy yucky codesmells for name in audio_cache: if 'output' not in audio_cache[name]: continue output_voices.append(f'{outdir}/{voice}_{name}.wav') with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f: f.write(json.dumps(info, indent='\t') ) if args.voice_fixer and voicefixer: fixed_output_voices = [] for path in progress.tqdm(output_voices, desc="Running voicefix..."): fixed = path.replace(".wav", "_fixed.wav") voicefixer.restore( input=path, output=fixed, cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda, #mode=mode, ) fixed_output_voices.append(fixed) output_voices = fixed_output_voices if voice is not None and conditioning_latents is not None: with open(f'{get_voice_dir()}/{voice}/cond_latents.pth', 'rb') as f: info['latents'] = base64.b64encode(f.read()).decode("ascii") if args.embed_output_metadata: for name in progress.tqdm(audio_cache, desc="Embedding metadata..."): info['text'] = audio_cache[name]['text'] info['time'] = audio_cache[name]['time'] metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav") metadata['lyrics'] = json.dumps(info) metadata.save() if sample_voice is not None: sample_voice = (tts.input_sample_rate, sample_voice.numpy()) print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n") info['seed'] = settings['use_deterministic_seed'] if 'latents' in info: del info['latents'] with open(f'./config/generate.json', 'w', encoding="utf-8") as f: f.write(json.dumps(info, indent='\t') ) stats = [ [ seed, "{:.3f}".format(info['time']) ] ] return ( sample_voice, output_voices, stats, ) def setup_tortoise(restart=False): global args global tts global voicefixer if args.voice_fixer and not restart: try: from voicefixer import VoiceFixer print("Initializating voice-fixer") voicefixer = VoiceFixer() print("initialized voice-fixer") except Exception as e: print(f"Error occurred while tring to initialize voicefixer: {e}") print("Initializating TorToiSe...") tts = TextToSpeech(minor_optimizations=not args.low_vram) print("TorToiSe initialized, ready for generation.") return tts