ai-voice-cloning/src/utils.py

1850 lines
62 KiB
Python
Executable File

import os
if 'XDG_CACHE_HOME' not in os.environ:
os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/'))
if 'TORTOISE_MODELS_DIR' not in os.environ:
os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/'))
if 'TRANSFORMERS_CACHE' not in os.environ:
os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/'))
import argparse
import time
import json
import base64
import re
import urllib.request
import signal
import gc
import subprocess
import psutil
import yaml
import tqdm
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
import pandas as pd
from datetime import datetime
from datetime import timedelta
from tortoise.api import TextToSpeech, MODELS, get_model_path
from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.device import get_device_name, set_device_name
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"]
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
args = None
tts = None
tts_loading = False
webui = None
voicefixer = None
whisper_model = None
training_state = None
def generate(
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
progress=None
):
global args
global tts
unload_whisper()
unload_voicefixer()
if not tts:
# should check if it's loading or unloaded, and load it if it's unloaded
if tts_loading:
raise Exception("TTS is still initializing...")
load_tts()
do_gc()
if voice != "microphone":
voices = [voice]
else:
voices = []
if voice == "microphone":
if mic_audio is None:
raise Exception("Please provide audio from mic when choosing `microphone` as a voice input")
mic = load_audio(mic_audio, tts.input_sample_rate)
voice_samples, conditioning_latents = [mic], None
elif voice == "random":
voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents()
else:
progress(0, desc="Loading voice...")
# nasty check for users that, for whatever reason, updated the web UI but not mrq/tortoise-tts
if hasattr(tts, 'autoregressive_model_hash'):
voice_samples, conditioning_latents = load_voice(voice, model_hash=tts.autoregressive_model_hash)
else:
voice_samples, conditioning_latents = load_voice(voice)
if voice_samples and len(voice_samples) > 0:
sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu()
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
if voice != "microphone":
if hasattr(tts, 'autoregressive_model_hash'):
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth')
else:
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth')
voice_samples = None
else:
if conditioning_latents is not None:
sample_voice, _ = load_voice(voice, load_latents=False)
if sample_voice and len(sample_voice) > 0:
sample_voice = torch.cat(sample_voice, dim=-1).squeeze().cpu()
else:
sample_voice = None
if seed == 0:
seed = None
if conditioning_latents is not None and len(conditioning_latents) == 2 and cvvp_weight > 0:
print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents.")
cvvp_weight = 0
settings = {
'temperature': float(temperature),
'top_p': float(top_p),
'diffusion_temperature': float(diffusion_temperature),
'length_penalty': float(length_penalty),
'repetition_penalty': float(repetition_penalty),
'cond_free_k': float(cond_free_k),
'num_autoregressive_samples': num_autoregressive_samples,
'sample_batch_size': args.sample_batch_size,
'diffusion_iterations': diffusion_iterations,
'voice_samples': voice_samples,
'conditioning_latents': conditioning_latents,
'use_deterministic_seed': seed,
'return_deterministic_state': True,
'k': candidates,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'progress': progress,
'half_p': "Half Precision" in experimental_checkboxes,
'cond_free': "Conditioning-Free" in experimental_checkboxes,
'cvvp_amount': cvvp_weight,
}
# clamp it down for the insane users who want this
# it would be wiser to enforce the sample size to the batch size, but this is what the user wants
sample_batch_size = args.sample_batch_size
if not sample_batch_size:
sample_batch_size = tts.autoregressive_batch_size
if num_autoregressive_samples < sample_batch_size:
settings['sample_batch_size'] = num_autoregressive_samples
if delimiter is None:
delimiter = "\n"
elif delimiter == "\\n":
delimiter = "\n"
if delimiter and delimiter != "" and delimiter in text:
texts = text.split(delimiter)
else:
texts = split_and_recombine_text(text)
full_start_time = time.time()
outdir = f"./results/{voice}/"
os.makedirs(outdir, exist_ok=True)
audio_cache = {}
resample = None
if tts.output_sample_rate != args.output_sample_rate:
resampler = torchaudio.transforms.Resample(
tts.output_sample_rate,
args.output_sample_rate,
lowpass_filter_width=16,
rolloff=0.85,
resampling_method="kaiser_window",
beta=8.555504641634386,
)
volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None
idx = 0
idx_cache = {}
for i, file in enumerate(os.listdir(outdir)):
filename = os.path.basename(file)
extension = os.path.splitext(filename)[1]
if extension != ".json" and extension != ".wav":
continue
match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename)
key = int(match[0])
idx_cache[key] = True
if len(idx_cache) > 0:
keys = sorted(list(idx_cache.keys()))
idx = keys[-1] + 1
idx = pad(idx, 4)
def get_name(line=0, candidate=0, combined=False):
name = f"{idx}"
if combined:
name = f"{name}_combined"
elif len(texts) > 1:
name = f"{name}_{line}"
if candidates > 1:
name = f"{name}_{candidate}"
return name
for line, cut_text in enumerate(texts):
if emotion == "Custom":
if prompt and prompt.strip() != "":
cut_text = f"[{prompt},] {cut_text}"
elif emotion != "None":
cut_text = f"[I am really {emotion.lower()},] {cut_text}"
progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]'
print(f"{progress.msg_prefix} Generating line: {cut_text}")
start_time = time.time()
gen, additionals = tts.tts(cut_text, **settings )
seed = additionals[0]
run_time = time.time()-start_time
print(f"Generating line took {run_time} seconds")
if not isinstance(gen, list):
gen = [gen]
for j, g in enumerate(gen):
audio = g.squeeze(0).cpu()
name = get_name(line=line, candidate=j)
audio_cache[name] = {
'audio': audio,
'text': cut_text,
'time': run_time
}
# save here in case some error happens mid-batch
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate)
del gen
do_gc()
for k in audio_cache:
audio = audio_cache[k]['audio']
if resampler is not None:
audio = resampler(audio)
if volume_adjust is not None:
audio = volume_adjust(audio)
audio_cache[k]['audio'] = audio
torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate)
output_voices = []
for candidate in range(candidates):
if len(texts) > 1:
audio_clips = []
for line in range(len(texts)):
name = get_name(line=line, candidate=candidate)
audio = audio_cache[name]['audio']
audio_clips.append(audio)
name = get_name(candidate=candidate, combined=True)
audio = torch.cat(audio_clips, dim=-1)
torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate)
audio = audio.squeeze(0).cpu()
audio_cache[name] = {
'audio': audio,
'text': text,
'time': time.time()-full_start_time,
'output': True
}
else:
name = get_name(candidate=candidate)
audio_cache[name]['output'] = True
info = {
'text': text,
'delimiter': '\\n' if delimiter and delimiter == "\n" else delimiter,
'emotion': emotion,
'prompt': prompt,
'voice': voice,
'seed': seed,
'candidates': candidates,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'temperature': temperature,
'diffusion_sampler': diffusion_sampler,
'breathing_room': breathing_room,
'cvvp_weight': cvvp_weight,
'top_p': top_p,
'diffusion_temperature': diffusion_temperature,
'length_penalty': length_penalty,
'repetition_penalty': repetition_penalty,
'cond_free_k': cond_free_k,
'experimentals': experimental_checkboxes,
'time': time.time()-full_start_time,
'datetime': datetime.now().isoformat(),
'model': tts.autoregressive_model_path,
'model_hash': tts.autoregressive_model_hash if hasattr(tts, 'autoregressive_model_hash') else None,
}
"""
# kludgy yucky codesmells
for name in audio_cache:
if 'output' not in audio_cache[name]:
continue
#output_voices.append(f'{outdir}/{voice}_{name}.wav')
output_voices.append(name)
if not args.embed_output_metadata:
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
"""
if args.voice_fixer:
if not voicefixer:
progress(0, "Loading voicefix...")
load_voicefixer()
fixed_cache = {}
for name in progress.tqdm(audio_cache, desc="Running voicefix..."):
del audio_cache[name]['audio']
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
continue
path = f'{outdir}/{voice}_{name}.wav'
fixed = f'{outdir}/{voice}_{name}_fixed.wav'
voicefixer.restore(
input=path,
output=fixed,
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
#mode=mode,
)
fixed_cache[f'{name}_fixed'] = {
'text': audio_cache[name]['text'],
'time': audio_cache[name]['time'],
'output': True
}
audio_cache[name]['output'] = False
for name in fixed_cache:
audio_cache[name] = fixed_cache[name]
for name in audio_cache:
if 'output' not in audio_cache[name] or not audio_cache[name]['output']:
if args.prune_nonfinal_outputs:
audio_cache[name]['pruned'] = True
os.remove(f'{outdir}/{voice}_{name}.wav')
continue
output_voices.append(f'{outdir}/{voice}_{name}.wav')
if not args.embed_output_metadata:
with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
if voice and voice != "random" and conditioning_latents is not None:
latents_path = f'{get_voice_dir()}/{voice}/cond_latents.pth'
if hasattr(tts, 'autoregressive_model_hash'):
latents_path = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth'
try:
with open(latents_path, 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
except Exception as e:
pass
if args.embed_output_metadata:
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']:
continue
info['text'] = audio_cache[name]['text']
info['time'] = audio_cache[name]['time']
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
metadata['lyrics'] = json.dumps(info)
metadata.save()
if sample_voice is not None:
sample_voice = (tts.input_sample_rate, sample_voice.numpy())
print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n")
info['seed'] = settings['use_deterministic_seed']
if 'latents' in info:
del info['latents']
os.makedirs('./config/', exist_ok=True)
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(info, indent='\t') )
stats = [
[ seed, "{:.3f}".format(info['time']) ]
]
return (
sample_voice,
output_voices,
stats,
)
def cancel_generate():
import tortoise.api
tortoise.api.STOP_SIGNAL = True
def hash_file(path, algo="md5", buffer_size=0):
import hashlib
hash = None
if algo == "md5":
hash = hashlib.md5()
elif algo == "sha1":
hash = hashlib.sha1()
else:
raise Exception(f'Unknown hash algorithm specified: {algo}')
if not os.path.exists(path):
raise Exception(f'Path not found: {path}')
with open(path, 'rb') as f:
if buffer_size > 0:
while True:
data = f.read(buffer_size)
if not data:
break
hash.update(data)
else:
hash.update(f.read())
return "{0}".format(hash.hexdigest())
def update_baseline_for_latents_chunks( voice ):
path = f'{get_voice_dir()}/{voice}/'
if not os.path.isdir(path):
return 1
files = os.listdir(path)
total = 0
total_duration = 0
for file in files:
if file[-4:] != ".wav":
continue
metadata = torchaudio.info(f'{path}/{file}')
duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate
total_duration += duration
total = total + 1
if args.autocalculate_voice_chunk_duration_size == 0:
return int(total_duration / total) if total > 0 else 1
return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1
def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
global tts
global args
unload_whisper()
unload_voicefixer()
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
load_tts()
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
if voice_samples is None:
return
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
if hasattr(tts, 'autoregressive_model_hash'):
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth')
else:
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth')
return voice
# superfluous, but it cleans up some things
class TrainingState():
def __init__(self, config_path, keep_x_past_datasets=0, start=True, gpus=1):
# parse config to get its iteration
with open(config_path, 'r') as file:
self.config = yaml.safe_load(file)
self.killed = False
self.dataset_dir = f"./training/{self.config['name']}/"
self.batch_size = self.config['datasets']['train']['batch_size']
self.dataset_path = self.config['datasets']['train']['path']
with open(self.dataset_path, 'r', encoding="utf-8") as f:
self.dataset_size = len(f.readlines())
self.it = 0
self.its = self.config['train']['niter']
self.epoch = 0
self.epochs = int(self.its*self.batch_size/self.dataset_size)
self.checkpoint = 0
self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq'])
self.buffer = []
self.open_state = False
self.training_started = False
self.info = {}
self.epoch_rate = ""
self.epoch_time_start = 0
self.epoch_time_end = 0
self.epoch_time_deltas = 0
self.epoch_taken = 0
self.it_rate = ""
self.it_time_start = 0
self.it_time_end = 0
self.it_time_deltas = 0
self.it_taken = 0
self.last_step = 0
self.eta = "?"
self.eta_hhmmss = "?"
self.nan_detected = False
self.last_info_check_at = 0
self.statistics = []
self.losses = []
self.metrics = {
'step': "",
'rate': "",
'loss': "",
}
self.loss_milestones = [ 1.0, 0.15, 0.05 ]
self.load_losses()
if keep_x_past_datasets > 0:
self.cleanup_old(keep=keep_x_past_datasets)
if start:
self.spawn_process(config_path=config_path, gpus=gpus)
def spawn_process(self, config_path, gpus=1):
self.cmd = ['train.bat', config_path] if os.name == "nt" else ['./train.sh', str(int(gpus)), config_path]
print("Spawning process: ", " ".join(self.cmd))
self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
def load_losses(self, update=False):
if not os.path.isdir(f'{self.dataset_dir}/tb_logger/'):
return
try:
from tensorboard.backend.event_processing import event_accumulator
use_tensorboard = True
except Exception as e:
use_tensorboard = False
keys = ['loss_text_ce', 'loss_mel_ce', 'loss_gpt_total']
infos = {}
highest_step = self.last_info_check_at
if not update:
self.statistics = []
if use_tensorboard:
logs = sorted([f'{self.dataset_dir}/tb_logger/{d}' for d in os.listdir(f'{self.dataset_dir}/tb_logger/') if d[:6] == "events" ])
if update:
logs = [logs[-1]]
for log in logs:
try:
ea = event_accumulator.EventAccumulator(log, size_guidance={event_accumulator.SCALARS: 0})
ea.Reload()
for key in keys:
scalar = ea.Scalars(key)
for s in scalar:
if update and s.step <= self.last_info_check_at:
continue
highest_step = max( highest_step, s.step )
self.statistics.append( { "step": s.step, "value": s.value, "type": key } )
if key == 'loss_gpt_total':
self.losses.append( { "step": s.step, "value": s.value, "type": key } )
except Exception as e:
pass
else:
logs = sorted([f'{self.dataset_dir}/{d}' for d in os.listdir(self.dataset_dir) if d[-4:] == ".log" ])
if update:
logs = [logs[-1]]
for log in logs:
with open(log, 'r', encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
if line.find('INFO: [epoch:') >= 0:
# easily rip out our stats...
match = re.findall(r'\b([a-z_0-9]+?)\b: +?([0-9]\.[0-9]+?e[+-]\d+|[\d,]+)\b', line)
if not match or len(match) == 0:
continue
info = {}
for k, v in match:
info[k] = float(v.replace(",", ""))
if 'iter' in info:
it = info['iter']
infos[it] = info
for k in infos:
if 'loss_gpt_total' in infos[k]:
for key in keys:
if update and int(k) <= self.last_info_check_at:
continue
highest_step = max( highest_step, s.step )
self.statistics.append({ "step": int(k), "value": infos[k][key], "type": key })
if key == "loss_gpt_total":
self.losses.append({ "step": int(k), "value": infos[k][key], "type": key })
self.last_info_check_at = highest_step
def cleanup_old(self, keep=2):
if keep <= 0:
return
if not os.path.isdir(self.dataset_dir):
return
models = sorted([ int(d[:-8]) for d in os.listdir(f'{self.dataset_dir}/models/') if d[-8:] == "_gpt.pth" ])
states = sorted([ int(d[:-6]) for d in os.listdir(f'{self.dataset_dir}/training_state/') if d[-6:] == ".state" ])
remove_models = models[:-2]
remove_states = states[:-2]
for d in remove_models:
path = f'{self.dataset_dir}/models/{d}_gpt.pth'
print("Removing", path)
os.remove(path)
for d in remove_states:
path = f'{self.dataset_dir}/training_state/{d}.state'
print("Removing", path)
os.remove(path)
def parse(self, line, verbose=False, keep_x_past_datasets=0, buffer_size=8, progress=None ):
self.buffer.append(f'{line}')
should_return = False
percent = 0
message = None
# rip out iteration info
if not self.training_started:
if line.find('Start training from epoch') >= 0:
self.it_time_start = time.time()
self.epoch_time_start = time.time()
self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations
should_return = True
match = re.findall(r'epoch: ([\d,]+)', line)
if match and len(match) > 0:
self.epoch = int(match[0].replace(",", ""))
match = re.findall(r'iter: ([\d,]+)', line)
if match and len(match) > 0:
self.it = int(match[0].replace(",", ""))
self.checkpoints = int((self.its - self.it) / self.config['logger']['save_checkpoint_freq'])
else:
lapsed = False
message = None
if line.find('INFO: [epoch:') >= 0:
info_line = line.split("INFO:")[-1]
# to-do, actually validate this works, and probably kill training when it's found, the model's dead by this point
if ': nan' in info_line:
self.nan_detected = True
# easily rip out our stats...
match = re.findall(r'\b([a-z_0-9]+?)\b: *?([0-9]\.[0-9]+?e[+-]\d+|[\d,]+)\b', info_line)
if match and len(match) > 0:
for k, v in match:
self.info[k] = float(v.replace(",", ""))
self.load_losses(update=True)
should_return = True
if 'epoch' in self.info:
self.epoch = int(self.info['epoch'])
if 'iter' in self.info:
self.it = int(self.info['iter'])
elif line.find('Saving models and training states') >= 0:
self.checkpoint = self.checkpoint + 1
percent = self.checkpoint / float(self.checkpoints)
message = f'[{self.checkpoint}/{self.checkpoints}] Saving checkpoint...'
if progress is not None:
progress(percent, message)
print(f'{"{:.3f}".format(percent*100)}% {message}')
self.buffer.append(f'{"{:.3f}".format(percent*100)}% {message}')
self.cleanup_old(keep=keep_x_past_datasets)
if line.find('%|') > 0:
match = re.findall(r'(\d+)%\|(.+?)\| (\d+|\?)\/(\d+|\?) \[(.+?)<(.+?), +(.+?)\]', line)
if match and len(match) > 0:
match = match[0]
per_cent = int(match[0])/100.0
progressbar = match[1]
step = int(match[2])
steps = int(match[3])
elapsed = match[4]
until = match[5]
rate = match[6]
last_step = self.last_step
self.last_step = step
if last_step < step:
self.it = self.it + (step - last_step)
if last_step == step and step == steps:
lapsed = True
self.it_time_end = time.time()
self.it_time_delta = self.it_time_end-self.it_time_start
self.it_time_start = time.time()
self.it_taken = self.it_taken + 1
if self.it_time_delta:
try:
rate = f'{"{:.3f}".format(self.it_time_delta)}s/it' if self.it_time_delta >= 1 or self.it_time_delta == 0 else f'{"{:.3f}".format(1/self.it_time_delta)}it/s'
self.it_rate = rate
except Exception as e:
pass
self.metrics['step'] = [f"{self.epoch}/{self.epochs}"]
if self.epochs != self.its:
self.metrics['step'].append(f"{self.it}/{self.its}")
if steps > 1:
self.metrics['step'].append(f"{step}/{steps}")
self.metrics['step'] = ", ".join(self.metrics['step'])
if lapsed:
self.epoch = self.epoch + 1
self.it = int(self.epoch * (self.dataset_size / self.batch_size))
self.epoch_time_end = time.time()
self.epoch_time_delta = self.epoch_time_end-self.epoch_time_start
self.epoch_time_start = time.time()
try:
self.epoch_rate = f'{"{:.3f}".format(self.epoch_time_delta)}s/epoch' if self.epoch_time_delta >= 1 or self.epoch_time_delta == 0 else f'{"{:.3f}".format(1/self.epoch_time_delta)}epoch/s' # I doubt anyone will have it/s rates, but its here
except Exception as e:
pass
#self.eta = (self.epochs - self.epoch) * self.epoch_time_delta
self.epoch_time_deltas = self.epoch_time_deltas + self.epoch_time_delta
self.epoch_taken = self.epoch_taken + 1
self.eta = (self.epochs - self.epoch) * (self.epoch_time_deltas / self.epoch_taken)
try:
eta = str(timedelta(seconds=int(self.eta)))
self.eta_hhmmss = eta
except Exception as e:
pass
self.metrics['rate'] = []
if self.epoch_rate:
self.metrics['rate'].append(self.epoch_rate)
if self.it_rate and self.epoch_rate != self.it_rate:
self.metrics['rate'].append(self.it_rate)
self.metrics['rate'] = ", ".join(self.metrics['rate'])
eta_hhmmss = "?"
if self.eta_hhmmss:
eta_hhmmss = self.eta_hhmmss
else:
try:
eta = (self.its - self.it) * (self.it_time_deltas / self.it_taken)
eta = str(timedelta(seconds=int(eta)))
eta_hhmmss = eta
except Exception as e:
pass
self.metrics['loss'] = []
if 'learning_rate_gpt_0' in self.info:
self.metrics['loss'].append(f'LR: {"{:.3e}".format(self.info["learning_rate_gpt_0"])}')
if len(self.losses) > 0:
self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}')
if len(self.losses) >= 2:
# """riemann sum""" but not really as this is for derivatives and not integrals
deriv = 0
accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it
loss_value = self.losses[-1]["value"]
for i in range(accum_length):
d1_loss = self.losses[accum_length-i-1]["value"]
d2_loss = self.losses[accum_length-i-2]["value"]
dloss = (d2_loss - d1_loss)
d1_step = self.losses[accum_length-i-1]["step"]
d2_step = self.losses[accum_length-i-2]["step"]
dstep = (d2_step - d1_step)
if dstep == 0:
continue
inst_deriv = dloss / dstep
deriv += inst_deriv
deriv = deriv / accum_length
if deriv != 0: # dloss < 0:
next_milestone = None
for milestone in self.loss_milestones:
if loss_value > milestone:
next_milestone = milestone
break
if next_milestone:
# tfw can do simple calculus but not basic algebra in my head
est_its = (next_milestone - loss_value) / deriv
if est_its >= 0:
self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its')
else:
est_loss = inst_deriv * (self.its - self.it) + loss_value
if est_loss >= 0:
self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}')
self.metrics['loss'] = ", ".join(self.metrics['loss'])
message = f"[{self.metrics['step']}] [{self.metrics['rate']}] [ETA: {eta_hhmmss}]\n[{self.metrics['loss']}]"
if self.nan_detected:
message = f"[!NaN DETECTED!] {message}"
if message:
percent = self.it / float(self.its) # self.epoch / float(self.epochs)
if progress is not None:
progress(percent, message)
self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}')
if verbose and not self.training_started:
should_return = True
self.buffer = self.buffer[-buffer_size:]
result = None
if should_return:
result = "".join(self.buffer) if not self.training_started else message
return (
result,
percent,
message,
)
def run_training(config_path, verbose=False, gpus=1, keep_x_past_datasets=0, progress=gr.Progress(track_tqdm=True)):
global training_state
if training_state and training_state.process:
return "Training already in progress"
# I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process
torch.multiprocessing.freeze_support()
unload_tts()
unload_whisper()
unload_voicefixer()
training_state = TrainingState(config_path=config_path, keep_x_past_datasets=keep_x_past_datasets, gpus=gpus)
for line in iter(training_state.process.stdout.readline, ""):
if training_state.killed:
return
result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_datasets=keep_x_past_datasets, progress=progress )
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
if result:
yield result
if progress is not None and message:
progress(percent, message)
if training_state:
training_state.process.stdout.close()
return_code = training_state.process.wait()
training_state = None
def update_training_dataplot(config_path=None):
global training_state
update = None
if not training_state:
if config_path:
training_state = TrainingState(config_path=config_path, start=False)
if training_state.statistics:
update = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics), x_lim=[0,training_state.its], x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=600, height=350,)
del training_state
training_state = None
elif training_state.statistics:
training_state.load_losses()
update = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics), x_lim=[0,training_state.its], x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=600, height=350,)
return update
def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)):
global training_state
if not training_state or not training_state.process:
return "Training not in progress"
for line in iter(training_state.process.stdout.readline, ""):
result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_datasets=keep_x_past_datasets, progress=progress )
print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}")
if result:
yield result
if progress is not None and message:
progress(percent, message)
def stop_training():
global training_state
if training_state is None:
return "No training in progress"
print("Killing training process...")
training_state.killed = True
children = []
# wrapped in a try/catch in case for some reason this fails outside of Linux
try:
children = [p.info for p in psutil.process_iter(attrs=['pid', 'name', 'cmdline']) if './src/train.py' in p.info['cmdline']]
except Exception as e:
pass
training_state.process.stdout.close()
training_state.process.terminate()
training_state.process.kill()
return_code = training_state.process.wait()
for p in children:
os.kill( p['pid'], signal.SIGKILL )
training_state = None
print("Killed training process.")
return f"Training cancelled: {return_code}"
def get_halfp_model_path():
autoregressive_model_path = get_model_path('autoregressive.pth')
return autoregressive_model_path.replace(".pth", "_half.pth")
def convert_to_halfp():
autoregressive_model_path = get_model_path('autoregressive.pth')
print(f'Converting model to half precision: {autoregressive_model_path}')
model = torch.load(autoregressive_model_path)
for k in model:
model[k] = model[k].half()
outfile = get_halfp_model_path()
torch.save(model, outfile)
print(f'Converted model to half precision: {outfile}')
def whisper_transcribe( file, language=None ):
# shouldn't happen, but it's for safety
if not whisper_model:
load_whisper_model(language=language)
if args.whisper_backend == "openai/whisper":
if not language:
language = None
return whisper_model.transcribe(file, language=language)
elif args.whisper_backend == "lightmare/whispercpp":
res = whisper_model.transcribe(file)
segments = whisper_model.extract_text_and_timestamps( res )
result = {
'segments': []
}
for segment in segments:
reparsed = {
'start': segment[0] / 100.0,
'end': segment[1] / 100.0,
'text': segment[2],
}
result['segments'].append(reparsed)
return result
# credit to https://git.ecker.tech/yqxtqymn for the busywork of getting this added
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
result = whisper_model.transcribe(file)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result_aligned = whisperx.align(result["segments"], model_a, metadata, file, device)
for i in range(len(result_aligned['segments'])):
del result_aligned['segments'][i]['word-segments']
del result_aligned['segments'][i]['char-segments']
result['segments'] = result_aligned['segments']
return result
def prepare_dataset( files, outdir, language=None, skip_existings=False, progress=None ):
unload_tts()
global whisper_model
if whisper_model is None:
load_whisper_model(language=language)
os.makedirs(outdir, exist_ok=True)
results = {}
transcription = []
files = sorted(files)
previous_list = []
if skip_existings and os.path.exists(f'{outdir}/train.txt'):
parsed_list = []
with open(f'{outdir}/train.txt', 'r', encoding="utf-8") as f:
parsed_list = f.readlines()
for line in parsed_list:
match = re.findall(r"^(.+?)_\d+\.wav$", line.split("|")[0])
print(match)
if match is None or len(match) == 0:
continue
if match[0] not in previous_list:
previous_list.append(f'{match[0]}.wav')
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
basename = os.path.basename(file)
if basename in previous_list:
print(f"Skipping already parsed file: {basename}")
continue
result = whisper_transcribe(file, language=language)
results[basename] = result
print(f"Transcribed file: {file}, {len(result['segments'])} found.")
waveform, sampling_rate = torchaudio.load(file)
num_channels, num_frames = waveform.shape
idx = 0
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
start = int(segment['start'] * sampling_rate)
end = int(segment['end'] * sampling_rate)
sliced_waveform = waveform[:, start:end]
sliced_name = basename.replace(".wav", f"_{pad(idx, 4)}.wav")
if not torch.any(sliced_waveform < 0):
print(f"Error with {sliced_name}, skipping...")
continue
torchaudio.save(f"{outdir}/{sliced_name}", sliced_waveform, sampling_rate)
idx = idx + 1
line = f"{sliced_name}|{segment['text'].strip()}"
transcription.append(line)
with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f:
f.write(f'{line}\n')
do_gc()
with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(results, indent='\t'))
joined = '\n'.join(transcription)
with open(f'{outdir}/train.txt', 'w', encoding="utf-8") as f:
f.write(joined)
unload_whisper()
return f"Processed dataset to: {outdir}\n{joined}"
def calc_iterations( epochs, lines, batch_size ):
iterations = int(epochs * lines / float(batch_size))
return iterations
def schedule_learning_rate( iterations, schedule=EPOCH_SCHEDULE ):
return [int(iterations * d) for d in schedule]
def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, resume_path, half_p, bnb, workers, source_model, voice ):
name = f"{voice}-finetune"
dataset_name = f"{voice}-train"
dataset_path = f"./training/{voice}/train.txt"
validation_name = f"{voice}-val"
validation_path = f"./training/{voice}/train.txt"
with open(dataset_path, 'r', encoding="utf-8") as f:
lines = len(f.readlines())
messages = []
if batch_size > lines:
batch_size = lines
messages.append(f"Batch size is larger than your dataset, clamping batch size to: {batch_size}")
if batch_size % lines != 0:
nearest_slice = int(lines / batch_size) + 1
batch_size = int(lines / nearest_slice)
messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {batch_size} ({nearest_slice} steps per epoch)")
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
if batch_size / gradient_accumulation_size < 2:
gradient_accumulation_size = int(batch_size / 2)
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {gradient_accumulation_size}")
elif batch_size % gradient_accumulation_size != 0:
gradient_accumulation_size = int(batch_size / gradient_accumulation_size)
if gradient_accumulation_size == 0:
gradient_accumulation_size = 1
messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {gradient_accumulation_size}")
iterations = calc_iterations(epochs=epochs, lines=lines, batch_size=batch_size)
if epochs < print_rate:
print_rate = epochs
messages.append(f"Print rate is too small for the given iteration step, clamping print rate to: {print_rate}")
if epochs < save_rate:
save_rate = epochs
messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {save_rate}")
if resume_path and not os.path.exists(resume_path):
resume_path = None
messages.append("Resume path specified, but does not exist. Disabling...")
if bnb:
messages.append("BitsAndBytes requested. Please note this is ! EXPERIMENTAL !")
if half_p:
if bnb:
half_p = False
messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...")
else:
messages.append("Half Precision requested. Please note this is ! EXPERIMENTAL !")
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
messages.append(f"For {epochs} epochs with {lines} lines in batches of {batch_size}, iterating for {iterations} steps ({int(iterations / epochs)} steps per epoch)")
return (
learning_rate,
text_ce_lr_weight,
learning_rate_schedule,
batch_size,
gradient_accumulation_size,
print_rate,
save_rate,
resume_path,
messages
)
def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, output_name=None, resume_path=None, half_p=None, bnb=None, workers=None, source_model=None ):
if not source_model:
source_model = f"./models/tortoise/autoregressive{'_half' if half_p else ''}.pth"
settings = {
"iterations": iterations if iterations else 500,
"batch_size": batch_size if batch_size else 64,
"learning_rate": learning_rate if learning_rate else 1e-5,
"gen_lr_steps": learning_rate_schedule if learning_rate_schedule else EPOCH_SCHEDULE,
"gradient_accumulation_size": gradient_accumulation_size if gradient_accumulation_size else 4,
"print_rate": print_rate if print_rate else 1,
"save_rate": save_rate if save_rate else 50,
"name": name if name else "finetune",
"dataset_name": dataset_name if dataset_name else "finetune",
"dataset_path": dataset_path if dataset_path else "./training/finetune/train.txt",
"validation_name": validation_name if validation_name else "finetune",
"validation_path": validation_path if validation_path else "./training/finetune/train.txt",
"text_ce_lr_weight": text_ce_lr_weight if text_ce_lr_weight else 0.01,
'resume_state': f"resume_state: '{resume_path}'",
'pretrain_model_gpt': f"pretrain_model_gpt: '{source_model}'",
'float16': 'true' if half_p else 'false',
'bitsandbytes': 'true' if bnb else 'false',
'workers': workers if workers else 2,
}
if resume_path:
settings['pretrain_model_gpt'] = f"# {settings['pretrain_model_gpt']}"
else:
settings['resume_state'] = f"# resume_state: './training/{name if name else 'finetune'}/training_state/#.state'"
if half_p:
if not os.path.exists(get_halfp_model_path()):
convert_to_halfp()
if not output_name:
output_name = f'{settings["name"]}.yaml'
with open(f'./models/.template.yaml', 'r', encoding="utf-8") as f:
yaml = f.read()
# i could just load and edit the YAML directly, but this is easier, as I don't need to bother with path traversals
for k in settings:
if settings[k] is None:
continue
yaml = yaml.replace(f"${{{k}}}", str(settings[k]))
outfile = f'./training/{output_name}'
with open(outfile, 'w', encoding="utf-8") as f:
f.write(yaml)
return f"Training settings saved to: {outfile}"
def import_voices(files, saveAs=None, progress=None):
global args
if not isinstance(files, list):
files = [files]
for file in enumerate_progress(files, desc="Importing voice files", progress=progress):
j, latents = read_generate_settings(file, read_latents=True)
if j is not None and saveAs is None:
saveAs = j['voice']
if saveAs is None or saveAs == "":
raise Exception("Specify a voice name")
outdir = f'{get_voice_dir()}/{saveAs}/'
os.makedirs(outdir, exist_ok=True)
if latents:
print(f"Importing latents to {latents}")
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
print(f"Imported latents to {latents}")
else:
filename = file.name
if filename[-4:] != ".wav":
raise Exception("Please convert to a WAV first")
path = f"{outdir}/{os.path.basename(filename)}"
print(f"Importing voice to {path}")
waveform, sampling_rate = torchaudio.load(filename)
if args.voice_fixer:
if not voicefixer:
load_voicefixer()
# resample to best bandwidth since voicefixer will do it anyways through librosa
if sampling_rate != 44100:
print(f"Resampling imported voice sample: {path}")
resampler = torchaudio.transforms.Resample(
sampling_rate,
44100,
lowpass_filter_width=16,
rolloff=0.85,
resampling_method="kaiser_window",
beta=8.555504641634386,
)
waveform = resampler(waveform)
sampling_rate = 44100
torchaudio.save(path, waveform, sampling_rate)
print(f"Running 'voicefixer' on voice sample: {path}")
voicefixer.restore(
input = path,
output = path,
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
#mode=mode,
)
else:
torchaudio.save(path, waveform, sampling_rate)
print(f"Imported voice to {path}")
def get_voice_list(dir=get_voice_dir(), append_defaults=False):
os.makedirs(dir, exist_ok=True)
res = sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ])
if append_defaults:
res = res + ["random", "microphone"]
return res
def get_autoregressive_models(dir="./models/finetunes/", prefixed=False):
os.makedirs(dir, exist_ok=True)
base = [get_model_path('autoregressive.pth')]
halfp = get_halfp_model_path()
if os.path.exists(halfp):
base.append(halfp)
additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ])
found = []
for training in os.listdir(f'./training/'):
if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/models/'):
continue
models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/models/') if d[-8:] == "_gpt.pth" ])
found = found + [ f'./training/{training}/models/{d}_gpt.pth' for d in models ]
res = base + additionals + found
if prefixed:
for i in range(len(res)):
path = res[i]
hash = hash_file(path)
shorthash = hash[:8]
res[i] = f'[{shorthash}] {path}'
return res
def get_dataset_list(dir="./training/"):
return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.txt" in os.listdir(os.path.join(dir, d)) ])
def get_training_list(dir="./training/"):
return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 and "train.yaml" in os.listdir(os.path.join(dir, d)) ])
def do_gc():
gc.collect()
try:
torch.cuda.empty_cache()
except Exception as e:
pass
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
def curl(url):
try:
req = urllib.request.Request(url, headers={'User-Agent': 'Python'})
conn = urllib.request.urlopen(req)
data = conn.read()
data = data.decode()
data = json.loads(data)
conn.close()
return data
except Exception as e:
print(e)
return None
def check_for_updates():
if not os.path.isfile('./.git/FETCH_HEAD'):
print("Cannot check for updates: not from a git repo")
return False
with open(f'./.git/FETCH_HEAD', 'r', encoding="utf-8") as f:
head = f.read()
match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head)
if match is None or len(match) == 0:
print("Cannot check for updates: cannot parse FETCH_HEAD")
return False
match = match[0]
local = match[0]
host = match[1]
owner = match[2]
repo = match[3]
res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances
if res is None or len(res) == 0:
print("Cannot check for updates: cannot fetch from remote")
return False
remote = res[0]["commit"]["id"]
if remote != local:
print(f"New version found: {local[:8]} => {remote[:8]}")
return True
return False
def enumerate_progress(iterable, desc=None, progress=None, verbose=None):
if verbose and desc is not None:
print(desc)
if progress is None:
return tqdm(iterable, disable=not verbose)
return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
def notify_progress(message, progress=None, verbose=True):
if verbose:
print(message)
if progress is None:
return
progress(0, desc=message)
def get_args():
global args
return args
def setup_args():
global args
default_arguments = {
'share': False,
'listen': None,
'check-for-updates': False,
'models-from-local-only': False,
'low-vram': False,
'sample-batch-size': None,
'embed-output-metadata': True,
'latents-lean-and-mean': True,
'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it
'voice-fixer-use-cuda': True,
'force-cpu-for-conditioning-latents': False,
'defer-tts-load': False,
'device-override': None,
'prune-nonfinal-outputs': True,
'use-bigvgan-vocoder': True,
'concurrency-count': 2,
'autocalculate-voice-chunk-duration-size': 0,
'output-sample-rate': 44100,
'output-volume': 1,
'autoregressive-model': None,
'whisper-backend': 'openai/whisper',
'whisper-model': "base",
'training-default-halfp': False,
'training-default-bnb': True,
}
if os.path.isfile('./config/exec.json'):
with open(f'./config/exec.json', 'r', encoding="utf-8") as f:
try:
overrides = json.load(f)
for k in overrides:
default_arguments[k] = overrides[k]
except Exception as e:
print(e)
pass
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on")
parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup")
parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models")
parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage")
parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)")
parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.")
parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.")
parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.")
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
parser.add_argument("--use-bigvgan-vocoder", default=default_arguments['use-bigvgan-vocoder'], action='store_true', help="Uses BigVGAN in place of the default vocoder")
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)")
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp, m-bain/whisperx)")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb")
parser.add_argument("--os", default="unix", help="Specifies which OS, easily")
args = parser.parse_args()
args.embed_output_metadata = not args.no_embed_output_metadata
if not args.device_override:
set_device_name(args.device_override)
args.listen_host = None
args.listen_port = None
args.listen_path = None
if args.listen:
try:
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0]
args.listen_host = match[0] if match[0] != "" else "127.0.0.1"
args.listen_port = match[1] if match[1] != "" else None
args.listen_path = match[2] if match[2] != "" else "/"
except Exception as e:
pass
if args.listen_port is not None:
args.listen_port = int(args.listen_port)
if args.listen_port == 0:
args.listen_port = None
return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
global args
args.listen = listen
args.share = share
args.check_for_updates = check_for_updates
args.models_from_local_only = models_from_local_only
args.low_vram = low_vram
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
args.defer_tts_load = defer_tts_load
args.prune_nonfinal_outputs = prune_nonfinal_outputs
args.use_bigvgan_vocoder = use_bigvgan_vocoder
args.device_override = device_override
args.sample_batch_size = sample_batch_size
args.embed_output_metadata = embed_output_metadata
args.latents_lean_and_mean = latents_lean_and_mean
args.voice_fixer = voice_fixer
args.voice_fixer_use_cuda = voice_fixer_use_cuda
args.concurrency_count = concurrency_count
args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = autocalculate_voice_chunk_duration_size
args.output_volume = output_volume
args.autoregressive_model = autoregressive_model
args.whisper_backend = whisper_backend
args.whisper_model = whisper_model
args.training_default_halfp = training_default_halfp
args.training_default_bnb = training_default_bnb
save_args_settings()
def save_args_settings():
global args
settings = {
'listen': None if not args.listen else args.listen,
'share': args.share,
'low-vram':args.low_vram,
'check-for-updates':args.check_for_updates,
'models-from-local-only':args.models_from_local_only,
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
'defer-tts-load': args.defer_tts_load,
'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
'use-bigvgan-vocoder': args.use_bigvgan_vocoder,
'device-override': args.device_override,
'sample-batch-size': args.sample_batch_size,
'embed-output-metadata': args.embed_output_metadata,
'latents-lean-and-mean': args.latents_lean_and_mean,
'voice-fixer': args.voice_fixer,
'voice-fixer-use-cuda': args.voice_fixer_use_cuda,
'concurrency-count': args.concurrency_count,
'output-sample-rate': args.output_sample_rate,
'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size,
'output-volume': args.output_volume,
'autoregressive-model': args.autoregressive_model,
'whisper-backend': args.whisper_backend,
'whisper-model': args.whisper_model,
'training-default-halfp': args.training_default_halfp,
'training-default-bnb': args.training_default_bnb,
}
os.makedirs('./config/', exist_ok=True)
with open(f'./config/exec.json', 'w', encoding="utf-8") as f:
f.write(json.dumps(settings, indent='\t') )
def import_generate_settings(file="./config/generate.json"):
settings, _ = read_generate_settings(file, read_latents=False)
if settings is None:
return None
return (
None if 'text' not in settings else settings['text'],
None if 'delimiter' not in settings else settings['delimiter'],
None if 'emotion' not in settings else settings['emotion'],
None if 'prompt' not in settings else settings['prompt'],
None if 'voice' not in settings else settings['voice'],
None,
None,
None if 'seed' not in settings else settings['seed'],
None if 'candidates' not in settings else settings['candidates'],
None if 'num_autoregressive_samples' not in settings else settings['num_autoregressive_samples'],
None if 'diffusion_iterations' not in settings else settings['diffusion_iterations'],
0.8 if 'temperature' not in settings else settings['temperature'],
"DDIM" if 'diffusion_sampler' not in settings else settings['diffusion_sampler'],
8 if 'breathing_room' not in settings else settings['breathing_room'],
0.0 if 'cvvp_weight' not in settings else settings['cvvp_weight'],
0.8 if 'top_p' not in settings else settings['top_p'],
1.0 if 'diffusion_temperature' not in settings else settings['diffusion_temperature'],
1.0 if 'length_penalty' not in settings else settings['length_penalty'],
2.0 if 'repetition_penalty' not in settings else settings['repetition_penalty'],
2.0 if 'cond_free_k' not in settings else settings['cond_free_k'],
None if 'experimentals' not in settings else settings['experimentals'],
)
def reset_generation_settings():
with open(f'./config/generate.json', 'w', encoding="utf-8") as f:
f.write(json.dumps({}, indent='\t') )
return import_generate_settings()
def read_generate_settings(file, read_latents=True):
j = None
latents = None
if isinstance(file, list) and len(file) == 1:
file = file[0]
try:
if file is not None:
if hasattr(file, 'name'):
file = file.name
if file[-4:] == ".wav":
metadata = music_tag.load_file(file)
if 'lyrics' in metadata:
j = json.loads(str(metadata['lyrics']))
elif file[-5:] == ".json":
with open(file, 'r') as f:
j = json.load(f)
except Exception as e:
pass
if j is not None:
if 'latents' in j:
if read_latents:
latents = base64.b64decode(j['latents'])
del j['latents']
if "time" in j:
j["time"] = "{:.3f}".format(j["time"])
return (
j,
latents,
)
def load_tts( restart=False, model=None ):
global args
global tts
if restart:
unload_tts()
if model:
args.autoregressive_model = model
print(f"Loading TorToiSe... (using model: {args.autoregressive_model})")
tts_loading = True
try:
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
except Exception as e:
tts = TextToSpeech(minor_optimizations=not args.low_vram)
load_autoregressive_model(args.autoregressive_model)
if not hasattr(tts, 'autoregressive_model_hash'):
tts.autoregressive_model_hash = hash_file(tts.autoregressive_model_path)
tts_loading = False
get_model_path('dvae.pth')
print("Loaded TorToiSe, ready for generation.")
return tts
setup_tortoise = load_tts
def unload_tts():
global tts
if tts:
del tts
tts = None
print("Unloaded TTS")
do_gc()
def reload_tts( model=None ):
load_tts( restart=True, model=model )
def update_autoregressive_model(autoregressive_model_path):
match = re.findall(r'^\[[a-fA-F0-9]{8}\] (.+?)$', autoregressive_model_path)
if match:
autoregressive_model_path = match[0]
if not autoregressive_model_path or not os.path.exists(autoregressive_model_path):
print(f"Invalid model: {autoregressive_model_path}")
return
args.autoregressive_model = autoregressive_model_path
save_args_settings()
print(f'Stored autoregressive model to settings: {autoregressive_model_path}')
global tts
if not tts:
if tts_loading:
raise Exception("TTS is still initializing...")
return
print(f"Loading model: {autoregressive_model_path}")
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(autoregressive_model_path):
tts.load_autoregressive_model(autoregressive_model_path)
# polyfill in case a user did NOT update the packages
# this shouldn't happen anymore, as I just clone mrq/tortoise-tts, and inject it into sys.path
else:
from tortoise.models.autoregressive import UnifiedVoice
tts.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', tts.models_dir)
del tts.autoregressive
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False).cpu().eval()
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
if tts.preloaded_tensors:
tts.autoregressive = tts.autoregressive.to(tts.device)
if not hasattr(tts, 'autoregressive_model_hash'):
tts.autoregressive_model_hash = hash_file(autoregressive_model_path)
print(f"Loaded model: {tts.autoregressive_model_path}")
do_gc()
return autoregressive_model_path
def load_voicefixer(restart=False):
global voicefixer
if restart:
unload_voicefixer()
try:
print("Loading Voicefixer")
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
print("Loaded Voicefixer")
except Exception as e:
print(f"Error occurred while tring to initialize voicefixer: {e}")
def unload_voicefixer():
global voicefixer
if voicefixer:
del voicefixer
voicefixer = None
print("Unloaded Voicefixer")
do_gc()
def load_whisper_model(language=None, model_name=None, progress=None):
global whisper_model
if args.whisper_backend not in WHISPER_BACKENDS:
raise Exception(f"unavailable backend: {args.whisper_backend}")
if args.whisper_backend != "m-bain/whisperx" and model_name == "large-v2":
raise Exception("large-v2 is only available for m-bain/whisperx backend")
if not model_name:
model_name = args.whisper_model
else:
args.whisper_model = model_name
save_args_settings()
if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS:
model_name = f'{model_name}.{language}'
print(f"Loading specialized model for language: {language}")
notify_progress(f"Loading Whisper model: {model_name}", progress)
if args.whisper_backend == "openai/whisper":
import whisper
whisper_model = whisper.load_model(model_name)
elif args.whisper_backend == "lightmare/whispercpp":
from whispercpp import Whisper
if not language:
language = 'auto'
b_lang = language.encode('ascii')
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
whisper_model = whisperx.load_model(model_name, device)
print("Loaded Whisper model")
def unload_whisper():
global whisper_model
if whisper_model:
del whisper_model
whisper_model = None
print("Unloaded Whisper")
do_gc()