tortoise-tts/tortoise/models/clvp.py

163 lines
5.8 KiB
Python
Raw Normal View History

2022-01-28 06:19:29 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from tortoise.models.arch_util import CheckpointedXTransformerEncoder
from tortoise.models.transformer import Transformer
from tortoise.models.xtransformers import Encoder
2022-01-28 06:19:29 +00:00
import tortoise.utils.torch_intermediary as ml
2022-01-28 06:19:29 +00:00
from tortoise.utils.device import print_stats, do_gc
2022-01-28 06:19:29 +00:00
def exists(val):
return val is not None
def masked_mean(t, mask, dim = 1):
t = t.masked_fill(~mask[:, :, None], 0.)
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
class CLVP(nn.Module):
2022-01-28 06:19:29 +00:00
"""
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
transcribed text.
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
"""
def __init__(
self,
*,
dim_text=512,
dim_speech=512,
dim_latent=512,
num_text_tokens=256,
text_enc_depth=6,
text_seq_len=120,
text_heads=8,
num_speech_tokens=8192,
speech_enc_depth=6,
speech_heads=8,
speech_seq_len=250,
text_mask_percentage=0,
voice_mask_percentage=0,
wav_token_compression=1024,
use_xformers=False,
2022-01-28 06:19:29 +00:00
):
super().__init__()
# nn.Embedding
self.text_emb = ml.Embedding(num_text_tokens, dim_text)
# nn.Linear
self.to_text_latent = ml.Linear(dim_text, dim_latent, bias=False)
2022-01-28 06:19:29 +00:00
# nn.Embedding
self.speech_emb = ml.Embedding(num_speech_tokens, dim_speech)
# nn.Linear
self.to_speech_latent = ml.Linear(dim_speech, dim_latent, bias=False)
2022-01-28 06:19:29 +00:00
if use_xformers:
self.text_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
attn_layers=Encoder(
dim=dim_text,
depth=text_enc_depth,
heads=text_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
self.speech_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
attn_layers=Encoder(
dim=dim_speech,
depth=speech_enc_depth,
heads=speech_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
else:
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
heads=text_heads)
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
depth=speech_enc_depth, heads=speech_heads)
2022-01-28 06:19:29 +00:00
self.temperature = nn.Parameter(torch.tensor(1.))
self.text_mask_percentage = text_mask_percentage
self.voice_mask_percentage = voice_mask_percentage
self.wav_token_compression = wav_token_compression
self.xformers = use_xformers
if not use_xformers:
# nn.Embedding
self.text_pos_emb = ml.Embedding(text_seq_len, dim_text)
# nn.Embedding
self.speech_pos_emb = ml.Embedding(num_speech_tokens, dim_speech)
2022-01-28 06:19:29 +00:00
def forward(
self,
text,
speech_tokens,
return_loss=False
):
b, device = text.shape[0], text.device
if self.training:
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
else:
text_mask = torch.ones_like(text.float()).bool()
voice_mask = torch.ones_like(speech_tokens.float()).bool()
text_emb = self.text_emb(text)
speech_emb = self.speech_emb(speech_tokens)
if not self.xformers:
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
2022-01-28 06:19:29 +00:00
text_latents = self.to_text_latent(masked_mean(self.text_transformer(text_emb, mask=text_mask), text_mask, dim=1))
2022-01-28 06:19:29 +00:00
# on ROCm at least, allocated VRAM spikes here
do_gc()
speech_latents = self.to_speech_latent(masked_mean(self.speech_transformer(speech_emb, mask=voice_mask), voice_mask, dim=1))
do_gc()
2022-01-28 06:19:29 +00:00
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
labels = torch.arange(b, device=device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
if __name__ == '__main__':
clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
2022-01-28 06:19:29 +00:00
clip(torch.randint(0,256,(2,120)),
torch.tensor([50,100]),
torch.randint(0,8192,(2,250)),
torch.tensor([101,102]),
return_loss=True)
nonloss = clip(torch.randint(0,256,(2,120)),
torch.tensor([50,100]),
torch.randint(0,8192,(2,250)),
torch.tensor([101,102]),
return_loss=False)
print(nonloss.shape)