tortoise-tts/tortoise_tts.ipynb

248 lines
9.8 KiB
Plaintext
Raw Normal View History

2022-03-11 06:21:01 +00:00
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "tortoise-tts.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JrK20I32grP6"
},
"outputs": [],
"source": [
"!git clone https://github.com/neonbjb/tortoise-tts.git\n",
"%cd tortoise-tts\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "code",
"source": [
"# Imports used through the rest of the notebook.\n",
"import torch\n",
"import torchaudio\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from tqdm import tqdm\n",
"\n",
"from utils.tokenizer import VoiceBpeTokenizer\n",
"from models.discrete_diffusion_vocoder import DiscreteDiffusionVocoder\n",
"from models.text_voice_clip import VoiceCLIP\n",
"from models.dvae import DiscreteVAE\n",
"from models.autoregressive import UnifiedVoice\n",
"\n",
"# These have some fairly interesting code that is hidden in the colab. Consider checking it out.\n",
"from do_tts import download_models, load_discrete_vocoder_diffuser, load_conditioning, fix_autoregressive_output, do_spectrogram_diffusion"
],
"metadata": {
"id": "Gen09NM4hONQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Download pretrained models and set up pretrained voice bank. Feel free to upload and add your own voices here.\n",
"# To do so, upload two WAV files cropped to 5-10 seconds of someone speaking.\n",
"download_models()\n",
"preselected_cond_voices = {\n",
" # Male voices\n",
" 'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],\n",
" 'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],\n",
" 'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],\n",
" 'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],\n",
" # Female voices\n",
" 'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],\n",
" 'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],\n",
" 'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],\n",
" 'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],\n",
" }"
],
"metadata": {
"id": "SSleVnRAiEE2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# This is the text that will be spoken.\n",
"text = \"And took the other as just as fair, and having perhaps the better claim, because it was grassy and wanted wear.\"\n",
"# This is the voice that will speak it.\n",
"voice = 'atkins'\n",
"# This is the number of samples we will generate from the DALLE-style model. More will produce better results, but will take longer to produce.\n",
"# I don't recommend going less than 128.\n",
"num_autoregressive_samples = 128"
],
"metadata": {
"id": "bt_aoxONjfL2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Prepare data.\n",
"tokenizer = VoiceBpeTokenizer()\n",
"text = torch.IntTensor(tokenizer.encode(text)).unsqueeze(0).cuda()\n",
"text = F.pad(text, (0,1)) # This may not be necessary.\n",
"cond_paths = preselected_cond_voices[voice]\n",
"conds = []\n",
"for cond_path in cond_paths:\n",
" c, cond_wav = load_conditioning(cond_path)\n",
" conds.append(c)\n",
"conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model."
],
"metadata": {
"id": "KEXOKjIvn6NW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the autoregressive model.\n",
"autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,\n",
" heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).cuda().eval()\n",
"autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))\n",
"stop_mel_token = autoregressive.stop_mel_token"
],
"metadata": {
"id": "Z15xFT_uhP8v"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Perform inference with the autoregressive model, generating num_autoregressive_samples\n",
"with torch.no_grad():\n",
" samples = []\n",
" for b in tqdm(range(num_autoregressive_samples // 16)):\n",
" codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,\n",
" temperature=.9, num_return_sequences=16, length_penalty=1)\n",
" padding_needed = 250 - codes.shape[1]\n",
" codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)\n",
" samples.append(codes)\n",
"\n",
"# Delete model weights to conserve memory.\n",
"del autoregressive"
],
"metadata": {
"id": "xajqWiEik-j0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the CLIP model.\n",
"clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,\n",
" num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()\n",
"clip.load_state_dict(torch.load('.models/clip.pth'))"
],
"metadata": {
"id": "KNgYSyuyliMs"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Use the CLIP model to select the best autoregressive output to match the given text.\n",
"clip_results = []\n",
"with torch.no_grad():\n",
" for batch in samples:\n",
" for i in range(batch.shape[0]):\n",
" batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)\n",
" text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.\n",
" clip_results.append(clip(text.repeat(batch.shape[0], 1),\n",
" torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),\n",
" batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),\n",
" return_loss=False))\n",
" clip_results = torch.cat(clip_results, dim=0)\n",
" samples = torch.cat(samples, dim=0)\n",
" best_results = samples[torch.topk(clip_results, k=1).indices]\n",
"\n",
"# Save samples to CPU memory, delete clip to conserve memory.\n",
"samples = samples.cpu()\n",
"del clip"
],
"metadata": {
"id": "DDXkM0lclp4U"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Load the DVAE and diffusion model.\n",
"dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,\n",
" record_codes=True, kernel_size=3, use_transposed_convs=False).cuda().eval()\n",
"dvae.load_state_dict(torch.load('.models/dvae.pth'), strict=False)\n",
"diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],\n",
" spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,\n",
" conditioning_inputs_provided=True, time_embed_dim_multiplier=4).cuda().eval()\n",
"diffusion.load_state_dict(torch.load('.models/diffusion.pth'))\n",
"diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)"
],
"metadata": {
"id": "97acSnBal8Q2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Decode the (best) discrete sequence created by the autoregressive model.\n",
"with torch.no_grad():\n",
" for b in range(best_results.shape[0]):\n",
" code = best_results[b].unsqueeze(0)\n",
" wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256, mean=True)\n",
" torchaudio.save(f'{voice}_{b}.wav', wav.squeeze(0).cpu(), 22050)"
],
"metadata": {
"id": "HEDABTrdl_kM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Listen to your text! (told you that'd take a long time..)\n",
"from IPython.display import Audio\n",
"Audio(data=wav.squeeze(0).cpu().numpy(), rate=22050)"
],
"metadata": {
"id": "EyHmcdqBmSvf"
},
"execution_count": null,
"outputs": []
}
]
}