forked from mrq/tortoise-tts
do not reload AR/vocoder if already loaded
This commit is contained in:
parent
e2db36af60
commit
26133c2031
|
@ -279,14 +279,16 @@ class TextToSpeech:
|
|||
|
||||
self.tokenizer = VoiceBpeTokenizer()
|
||||
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', models_dir)
|
||||
|
||||
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
||||
# Assume this is a traced directory.
|
||||
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
||||
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
||||
else:
|
||||
self.load_autoregressive_model(self.autoregressive_model_path)
|
||||
if not autoregressive_model_path or not os.path.exists(autoregressive_model_path):
|
||||
autoregressive_model_path = get_model_path('autoregressive.pth', models_dir)
|
||||
|
||||
self.load_autoregressive_model(autoregressive_model_path)
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
|
@ -316,11 +318,14 @@ class TextToSpeech:
|
|||
self.loading = False
|
||||
|
||||
def load_autoregressive_model(self, autoregressive_model_path):
|
||||
if hasattr(self,"autoregressive_model_path") and self.autoregressive_model_path == autoregressive_model_path:
|
||||
return
|
||||
|
||||
self.loading = True
|
||||
|
||||
previous_path = self.autoregressive_model_path
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', self.models_dir)
|
||||
self.autoregressive_model_hash = hash_file(self.autoregressive_model_path)
|
||||
print(f"Loading autoregressive model: {self.autoregressive_model_path}")
|
||||
|
||||
if hasattr(self, 'autoregressive'):
|
||||
del self.autoregressive
|
||||
|
@ -335,9 +340,14 @@ class TextToSpeech:
|
|||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
self.loading = False
|
||||
print(f"Loaded autoregressive model")
|
||||
|
||||
def load_vocoder_model(self, vocoder_model):
|
||||
if hasattr(self,"vocoder_model_path") and self.vocoder_model_path == vocoder_model:
|
||||
return
|
||||
|
||||
self.loading = True
|
||||
|
||||
if hasattr(self, 'vocoder'):
|
||||
del self.vocoder
|
||||
|
||||
|
@ -358,13 +368,14 @@ class TextToSpeech:
|
|||
self.vocoder_model_path = 'vocoder.pth'
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
|
||||
print(vocoder_model, vocoder_key, self.vocoder_model_path)
|
||||
print(f"Loading vocoder model: {self.vocoder_model_path}")
|
||||
self.vocoder.load_state_dict(torch.load(get_model_path(self.vocoder_model_path, self.models_dir), map_location=torch.device('cpu'))[vocoder_key])
|
||||
|
||||
self.vocoder.eval(inference=True)
|
||||
if self.preloaded_tensors:
|
||||
self.vocoder = self.vocoder.to(self.device)
|
||||
self.loading = False
|
||||
print(f"Loaded vocoder model")
|
||||
|
||||
def load_cvvp(self):
|
||||
"""Load CVVP model."""
|
||||
|
@ -427,11 +438,10 @@ class TextToSpeech:
|
|||
|
||||
if slices == 0:
|
||||
slices = 1
|
||||
else:
|
||||
if max_chunk_size is not None and chunk_size > max_chunk_size:
|
||||
slices = 1
|
||||
while int(chunk_size / slices) > max_chunk_size:
|
||||
slices = slices + 1
|
||||
elif max_chunk_size is not None and chunk_size > max_chunk_size:
|
||||
slices = 1
|
||||
while int(chunk_size / slices) > max_chunk_size:
|
||||
slices = slices + 1
|
||||
|
||||
chunks = torch.chunk(concat, slices, dim=1)
|
||||
chunk_size = chunks[0].shape[-1]
|
||||
|
|
Loading…
Reference in New Issue
Block a user