diff --git a/scripts/tortoise_tts.py b/scripts/tortoise_tts.py new file mode 100755 index 0000000..d61a890 --- /dev/null +++ b/scripts/tortoise_tts.py @@ -0,0 +1,259 @@ +#!/usr/bin/env python3 + +import argparse +import os +import sys +import tempfile +import time + +import torch +import torchaudio + +from tortoise.api import MODELS_DIR, TextToSpeech +from tortoise.utils.audio import get_voices, load_voices, load_audio +from tortoise.utils.text import split_and_recombine_text + +parser = argparse.ArgumentParser( + description='TorToiSe is a text-to-speech program that is capable of synthesizing speech ' + 'in multiple voices with realistic prosody and intonation.') + +parser.add_argument( + 'text', type=str, nargs='*', + help='Text to speak. If omitted, text is read from stdin.') +parser.add_argument( + '-v, --voice', type=str, default='random', metavar='VOICE', dest='voice', + help='Selects the voice to use for generation. Use the & character to join two voices together. ' + 'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. ' + 'Note that multiple voices require the --output-dir option to be set.') +parser.add_argument( + '-V, --voices-dir', metavar='VOICES_DIR', type=str, dest='voices_dir', + help='Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.') +parser.add_argument( + '-p, --preset', type=str, default='fast', choices=['ultra_fast', 'fast', 'standard', 'high_quality'], dest='preset', + help='Which voice quality preset to use.') +parser.add_argument( + '-q, --quiet', default=False, action='store_true', dest='quiet', + help='Suppress all output.') + +output_group = parser.add_mutually_exclusive_group(required=True) +output_group.add_argument( + '-l, --list-voices', default=False, action='store_true', dest='list_voices', + help='List available voices and exit.') +output_group.add_argument( + '-P, --play', action='store_true', dest='play', + help='Play the audio (requires pydub).') +output_group.add_argument( + '-o, --output', type=str, metavar='OUTPUT', dest='output', + help='Save the audio to a file.') +output_group.add_argument( + '-O, --output-dir', type=str, metavar='OUTPUT_DIR', dest='output_dir', + help='Save the audio to a directory as individual segments.') + +multi_output_group = parser.add_argument_group('multi-output options (requires --output-dir)') +multi_output_group.add_argument( + '--candidates', type=int, default=1, + help='How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.') +multi_output_group.add_argument( + '--regenerate', type=str, default=None, + help='Comma-separated list of clip numbers to re-generate.') +multi_output_group.add_argument( + '--skip-existing', action='store_true', + help='Set to skip re-generating existing clips.') + +advanced_group = parser.add_argument_group('advanced options') +advanced_group.add_argument( + '--produce-debug-state', default=False, action='store_true', + help='Whether or not to produce debug_states in current directory, which can aid in reproducing problems.') +advanced_group.add_argument( + '--seed', type=int, default=None, + help='Random seed which can be used to reproduce results.') +advanced_group.add_argument( + '--models-dir', type=str, default=MODELS_DIR, + help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to ' + '~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.') +advanced_group.add_argument( + '--text-split', type=str, default=None, + help='How big chunks to split the text into, in the format ,.') +advanced_group.add_argument( + '--disable-redaction', default=False, action='store_true', + help='Normally text enclosed in brackets are automatically redacted from the spoken output ' + '(but are still rendered by the model), this can be used for prompt engineering. ' + 'Set this to disable this behavior.') + +tuning_group = parser.add_argument_group('tuning options (overrides preset settings)') +tuning_group.add_argument( + '--num-autoregressive-samples', type=int, default=None, + help='Number of samples taken from the autoregressive model, all of which are filtered using CLVP. ' + 'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".') +tuning_group.add_argument( + '--temperature', type=float, default=None, + help='The softmax temperature of the autoregressive model.') +tuning_group.add_argument( + '--length-penalty', type=float, default=None, + help='A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.') +tuning_group.add_argument( + '--repetition-penalty', type=float, default=None, + help='A penalty that prevents the autoregressive decoder from repeating itself during decoding. ' + 'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.') +tuning_group.add_argument( + '--top-p', type=float, default=None, + help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.') +tuning_group.add_argument( + '--max-mel-tokens', type=int, default=None, + help='Restricts the output length. 1 to 600. Each unit is 1/20 of a second.') +tuning_group.add_argument( + '--cvvp-amount', type=float, default=None, + help='How much the CVVP model should influence the output.' + 'Increasing this can in some cases reduce the likelyhood of multiple speakers.') +tuning_group.add_argument( + '--diffusion-iterations', type=int, default=None, + help='Number of diffusion steps to perform. More steps means the network has more chances to iteratively' + 'refine the output, which should theoretically mean a higher quality output. ' + 'Generally a value above 250 is not noticeably better, however.') +tuning_group.add_argument( + '--cond-free', type=bool, default=None, + help='Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for ' + 'each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output ' + 'of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and ' + 'dramatically improves realism.') +tuning_group.add_argument( + '--cond-free-k', type=float, default=None, + help='Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. ' + 'As cond_free_k increases, the output becomes dominated by the conditioning-free signal. ' + 'Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k') +tuning_group.add_argument( + '--diffusion-temperature', type=float, default=None, + help='Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 ' + 'are the "mean" prediction of the diffusion network and will sound bland and smeared. ') + +usage_examples = f''' +Examples: + +Read text using random voice and place it in a file: + + {parser.prog} -o hello.wav "Hello, how are you?" + +Read text from stdin and play it using the tom voice: + + echo "Say it like you mean it!" | {parser.prog} -P -v tom + +Read a text file using multiple voices and save the audio clips to a directory: + + {parser.prog} -O /tmp/tts-results -v tom,emma max_length: + parser.error(f'--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})') + texts = split_and_recombine_text(text, desired_length, max_length) +else: + texts = split_and_recombine_text(text) +if len(texts) == 0: + parser.error('no text provided') + +if args.output_dir: + os.makedirs(args.output_dir, exist_ok=True) +else: + if len(selected_voices) > 1: + parser.error('cannot have multiple voices without --output-dir"') + if args.candiates > 1: + parser.error('cannot have multiple candidates without --output-dir"') + +# error out early if pydub isn't installed +if args.play: + try: + import pydub + import pydub.playback + except ImportError: + parser.error('--play requires pydub to be installed, which can be done with "pip install pydub"') + +seed = int(time.time()) if args.seed is None else args.seed +if not args.quiet: + print('Loading tts...') +tts = TextToSpeech(models_dir=args.models_dir, enable_redaction=not args.disable_redaction) +gen_settings = { + 'use_deterministic_seed': seed, + 'varbose': not args.quiet, + 'k': args.candidates, + 'preset': args.preset, +} +tuning_options = [ + 'num_autoregressive_samples', 'temperature', 'length_penalty', 'repetition_penalty', 'top_p', + 'max_mel_tokens', 'cvvp_amount', 'diffusion_iterations', 'cond_free', 'cond_free_k', 'diffusion_temperature'] +for option in tuning_options: + if getattr(args, option) is not None: + gen_settings[option] = getattr(args, option) +total_clips = len(texts) * len(selected_voices) +regenerate_clips = [int(x) for x in args.regenerate.split(',')] if args.regenerate else None +for voice_idx, voice in enumerate(selected_voices): + audio_parts = [] + voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs) + for text_idx, text in enumerate(texts): + clip_name = f'{"-".join(voice)}_{text_idx:02d}' + if args.output_dir: + first_clip = os.path.join(args.output_dir, f'{clip_name}_00.wav') + if (args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips)) and os.path.exists(first_clip): + audio_parts.append(load_audio(first_clip, 24000)) + if not args.quiet: + print(f'Skipping {clip_name}') + continue + if not args.quiet: + print(f'Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})...') + print(' ' + text) + gen = tts.tts_with_preset( + text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings) + gen = gen if args.candidates > 1 else [gen] + for candidate_idx, audio in enumerate(gen): + audio = audio.squeeze(0).cpu() + if candidate_idx == 0: + audio_parts.append(audio) + if args.output_dir: + filename = f'{clip_name}_{candidate_idx:02d}.wav' + torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) + + audio = torch.cat(audio_parts, dim=-1) + if args.output_dir: + filename = f'{"-".join(voice)}_combined.wav' + torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) + elif args.output: + filename = args.output if args.output else os.tmp + torchaudio.save(args.output, audio, 24000) + elif args.play: + f = tempfile.NamedTemporaryFile(suffix='.wav', delete=True) + torchaudio.save(f.name, audio, 24000) + pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) + + if args.produce_debug_state: + os.makedirs('debug_states', exist_ok=True) + dbg_state = (seed, texts, voice_samples, conditioning_latents, args) + torch.save(dbg_state, os.path.join('debug_states', f'debug_{"-".join(voice)}.pth')) diff --git a/tortoise/api.py b/tortoise/api.py index f3b729f..95c62f0 100644 --- a/tortoise/api.py +++ b/tortoise/api.py @@ -26,7 +26,8 @@ from tortoise.utils.wav2vec_alignment import Wav2VecAlignment pbar = None -MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', '.models') +DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models') +MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR) MODELS = { 'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth', 'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth', @@ -309,9 +310,9 @@ class TextToSpeech: 'high_quality': Use if you want the absolute best. This is not really worth the compute, though. """ # Use generally found best tuning knobs for generation. - kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, - 'top_p': .8, - 'cond_free_k': 2.0, 'diffusion_temperature': 1.0}) + settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, + 'top_p': .8, + 'cond_free_k': 2.0, 'diffusion_temperature': 1.0} # Presets are defined here. presets = { 'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False}, @@ -319,8 +320,9 @@ class TextToSpeech: 'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, 'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, } - kwargs.update(presets[preset]) - return self.tts(text, **kwargs) + settings.update(presets[preset]) + settings.update(kwargs) # allow overriding of preset settings with kwargs + return self.tts(text, **settings) def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None, return_deterministic_state=False, diff --git a/tortoise/utils/audio.py b/tortoise/utils/audio.py index 6cdd496..7d5390c 100644 --- a/tortoise/utils/audio.py +++ b/tortoise/utils/audio.py @@ -115,7 +115,8 @@ def load_voices(voices, extra_voice_dirs=[]): clips = [] for voice in voices: if voice == 'random': - print("Cannot combine a random voice with a non-random voice. Just using a random voice.") + if len(voices) > 1: + print("Cannot combine a random voice with a non-random voice. Just using a random voice.") return None, None clip, latent = load_voice(voice, extra_voice_dirs) if latent is None: