forked from mrq/tortoise-tts
Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
95f679f4ba | |||
bf3b6c87aa |
191
tortoise/api.py
191
tortoise/api.py
|
@ -51,7 +51,6 @@ MODELS = {
|
|||
'bigvgan_24khz_100band.json': 'https://huggingface.co/ecker/tortoise-tts-models/resolve/main/models/bigvgan_24khz_100band.json',
|
||||
}
|
||||
|
||||
|
||||
def hash_file(path, algo="md5", buffer_size=0):
|
||||
import hashlib
|
||||
|
||||
|
@ -78,14 +77,12 @@ def hash_file(path, algo="md5", buffer_size=0):
|
|||
|
||||
return "{0}".format(hash.hexdigest())
|
||||
|
||||
|
||||
def check_for_kill_signal():
|
||||
global STOP_SIGNAL
|
||||
if STOP_SIGNAL:
|
||||
STOP_SIGNAL = False
|
||||
raise Exception("Kill signal detected")
|
||||
|
||||
|
||||
def download_models(specific_models=None):
|
||||
"""
|
||||
Call to download all the models that Tortoise uses.
|
||||
|
@ -105,7 +102,6 @@ def download_models(specific_models=None):
|
|||
else:
|
||||
pbar.finish()
|
||||
pbar = None
|
||||
|
||||
for model_name, url in MODELS.items():
|
||||
if specific_models is not None and model_name not in specific_models:
|
||||
continue
|
||||
|
@ -146,18 +142,14 @@ def pad_or_truncate(t, length):
|
|||
return t[..., :length]
|
||||
|
||||
|
||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True,
|
||||
cond_free_k=1):
|
||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
||||
"""
|
||||
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||
"""
|
||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]),
|
||||
model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse',
|
||||
betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def format_conditioning(clip, cond_length=132300, device='cuda', sampling_rate=22050):
|
||||
"""
|
||||
|
@ -173,7 +165,6 @@ def format_conditioning(clip, cond_length=132300, device='cuda', sampling_rate=2
|
|||
mel_clip = mel_clip.unsqueeze(0)
|
||||
return migrate_to_device(mel_clip, device)
|
||||
|
||||
|
||||
def fix_autoregressive_output(codes, stop_token, complain=True):
|
||||
"""
|
||||
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||
|
@ -203,19 +194,15 @@ def fix_autoregressive_output(codes, stop_token, complain=True):
|
|||
|
||||
return codes
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True,
|
||||
desc=None, sampler="P", input_sample_rate=22050, output_sample_rate=24000):
|
||||
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True, desc=None, sampler="P", input_sample_rate=22050, output_sample_rate=24000):
|
||||
"""
|
||||
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
output_seq_len = latents.shape[
|
||||
1] * 4 * output_sample_rate // input_sample_rate # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||
output_seq_len = latents.shape[1] * 4 * output_sample_rate // input_sample_rate # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||
output_shape = (latents.shape[0], 100, output_seq_len)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len,
|
||||
False)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)
|
||||
|
||||
noise = torch.randn(output_shape, device=latents.device) * temperature
|
||||
|
||||
|
@ -243,7 +230,6 @@ def classify_audio_clip(clip):
|
|||
results = F.softmax(classifier(clip), dim=-1)
|
||||
return results[0][0]
|
||||
|
||||
|
||||
def migrate_to_device( t, device ):
|
||||
if t is None:
|
||||
return t
|
||||
|
@ -263,7 +249,6 @@ def migrate_to_device(t, device):
|
|||
|
||||
return t
|
||||
|
||||
|
||||
class TextToSpeech:
|
||||
"""
|
||||
Main entry point into Tortoise.
|
||||
|
@ -274,7 +259,8 @@ class TextToSpeech:
|
|||
unsqueeze_sample_batches=False,
|
||||
input_sample_rate=22050, output_sample_rate=24000,
|
||||
autoregressive_model_path=None, diffusion_model_path=None, vocoder_model=None, tokenizer_json=None,
|
||||
):
|
||||
# ):
|
||||
use_deepspeed=False): # Add use_deepspeed parameter
|
||||
"""
|
||||
Constructor
|
||||
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
||||
|
@ -295,7 +281,8 @@ class TextToSpeech:
|
|||
self.output_sample_rate = output_sample_rate
|
||||
self.minor_optimizations = minor_optimizations
|
||||
self.unsqueeze_sample_batches = unsqueeze_sample_batches
|
||||
|
||||
self.use_deepspeed = use_deepspeed # Store use_deepspeed as an instance variable
|
||||
print(f'use_deepspeed api_debug {use_deepspeed}')
|
||||
# for clarity, it's simpler to split these up and just predicate them on requesting VRAM-consuming optimizations
|
||||
self.preloaded_tensors = minor_optimizations
|
||||
self.use_kv_cache = minor_optimizations
|
||||
|
@ -328,6 +315,7 @@ class TextToSpeech:
|
|||
|
||||
self.load_diffusion_model(diffusion_model_path)
|
||||
|
||||
|
||||
self.clvp = CLVP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20,
|
||||
text_seq_len=350, text_heads=12,
|
||||
num_speech_tokens=8192, speech_enc_depth=20, speech_heads=12, speech_seq_len=430,
|
||||
|
@ -350,13 +338,11 @@ class TextToSpeech:
|
|||
|
||||
self.loading = False
|
||||
|
||||
def load_autoregressive_model(self, autoregressive_model_path):
|
||||
if hasattr(self, "autoregressive_model_path") and os.path.samefile(self.autoregressive_model_path,
|
||||
autoregressive_model_path):
|
||||
def load_autoregressive_model(self, autoregressive_model_path, is_xtts=False):
|
||||
if hasattr(self,"autoregressive_model_path") and os.path.samefile(self.autoregressive_model_path, autoregressive_model_path):
|
||||
return
|
||||
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(
|
||||
autoregressive_model_path) else get_model_path('autoregressive.pth', self.models_dir)
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', self.models_dir)
|
||||
new_hash = hash_file(self.autoregressive_model_path)
|
||||
|
||||
if hasattr(self,"autoregressive_model_hash") and self.autoregressive_model_hash == new_hash:
|
||||
|
@ -370,13 +356,40 @@ class TextToSpeech:
|
|||
if hasattr(self, 'autoregressive'):
|
||||
del self.autoregressive
|
||||
|
||||
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2,
|
||||
layers=30,
|
||||
model_dim=1024,
|
||||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False).cpu().eval()
|
||||
# XTTS requires a different "dimensionality" for its autoregressive model
|
||||
if new_hash == "e4ce21eae0043f7691d6a6c8540b74b8" or is_xtts:
|
||||
dimensionality = {
|
||||
"max_mel_tokens": 605,
|
||||
"max_text_tokens": 402,
|
||||
"max_prompt_tokens": 70,
|
||||
"max_conditioning_inputs": 1,
|
||||
"layers": 30,
|
||||
"model_dim": 1024,
|
||||
"heads": 16,
|
||||
"number_text_tokens": 5023, # -1
|
||||
"start_text_token": 261,
|
||||
"stop_text_token": 0,
|
||||
"number_mel_codes": 8194,
|
||||
"start_mel_token": 8192,
|
||||
"stop_mel_token": 8193,
|
||||
}
|
||||
else:
|
||||
dimensionality = {
|
||||
"max_mel_tokens": 604,
|
||||
"max_text_tokens": 402,
|
||||
"max_conditioning_inputs": 2,
|
||||
"layers": 30,
|
||||
"model_dim": 1024,
|
||||
"heads": 16,
|
||||
"number_text_tokens": 255,
|
||||
"start_text_token": 255,
|
||||
"checkpointing": False,
|
||||
"train_solo_embeddings": False
|
||||
}
|
||||
|
||||
self.autoregressive = UnifiedVoice(**dimensionality).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load(self.autoregressive_model_path))
|
||||
self.autoregressive.post_init_gpt2_config(kv_cache=self.use_kv_cache)
|
||||
self.autoregressive.post_init_gpt2_config(use_deepspeed=self.use_deepspeed, kv_cache=self.use_kv_cache)
|
||||
if self.preloaded_tensors:
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, self.device )
|
||||
|
||||
|
@ -389,16 +402,27 @@ class TextToSpeech:
|
|||
|
||||
self.loading = True
|
||||
|
||||
self.diffusion_model_path = diffusion_model_path if diffusion_model_path and os.path.exists(
|
||||
diffusion_model_path) else get_model_path('diffusion_decoder.pth', self.models_dir)
|
||||
self.diffusion_model_path = diffusion_model_path if diffusion_model_path and os.path.exists(diffusion_model_path) else get_model_path('diffusion_decoder.pth', self.models_dir)
|
||||
self.diffusion_model_hash = hash_file(self.diffusion_model_path)
|
||||
|
||||
if hasattr(self, 'diffusion'):
|
||||
del self.diffusion
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||
# XTTS does not require a different "dimensionality" for its diffusion model
|
||||
dimensionality = {
|
||||
"model_channels": 1024,
|
||||
"num_layers": 10,
|
||||
"in_channels": 100,
|
||||
"out_channels": 200,
|
||||
"in_latent_channels": 1024,
|
||||
"in_tokens": 8193,
|
||||
"dropout": 0,
|
||||
"use_fp16": False,
|
||||
"num_heads": 16,
|
||||
"layer_drop": 0,
|
||||
"unconditioned_percentage": 0
|
||||
}
|
||||
self.diffusion = DiffusionTts(**dimensionality)
|
||||
self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', self.models_dir)))
|
||||
if self.preloaded_tensors:
|
||||
self.diffusion = migrate_to_device( self.diffusion, self.device )
|
||||
|
@ -438,9 +462,7 @@ class TextToSpeech:
|
|||
self.vocoder = UnivNetGenerator().cpu()
|
||||
|
||||
print(f"Loading vocoder model: {self.vocoder_model_path}")
|
||||
self.vocoder.load_state_dict(
|
||||
torch.load(get_model_path(self.vocoder_model_path, self.models_dir), map_location=torch.device('cpu'))[
|
||||
vocoder_key])
|
||||
self.vocoder.load_state_dict(torch.load(get_model_path(self.vocoder_model_path, self.models_dir), map_location=torch.device('cpu'))[vocoder_key])
|
||||
|
||||
self.vocoder.eval(inference=True)
|
||||
if self.preloaded_tensors:
|
||||
|
@ -453,8 +475,7 @@ class TextToSpeech:
|
|||
return
|
||||
|
||||
self.loading = True
|
||||
self.tokenizer_json = tokenizer_json if tokenizer_json else os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)), '../tortoise/data/tokenizer.json')
|
||||
self.tokenizer_json = tokenizer_json if tokenizer_json else os.path.join(os.path.dirname(os.path.realpath(__file__)), '../tortoise/data/tokenizer.json')
|
||||
print("Loading tokenizer JSON:", self.tokenizer_json)
|
||||
|
||||
if hasattr(self, 'tokenizer'):
|
||||
|
@ -467,8 +488,7 @@ class TextToSpeech:
|
|||
|
||||
def load_cvvp(self):
|
||||
"""Load CVVP model."""
|
||||
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8,
|
||||
cond_mask_percentage=0,
|
||||
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
||||
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
||||
self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir)))
|
||||
|
||||
|
@ -476,23 +496,12 @@ class TextToSpeech:
|
|||
self.cvvp = migrate_to_device( self.cvvp, self.device )
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_conditioning_latents(
|
||||
self, voice_samples, return_mels=False, verbose=False, slices=1, max_chunk_size=None, force_cpu=False,
|
||||
original_ar=False, original_diffusion=False
|
||||
):
|
||||
def get_conditioning_latents(self, voice_samples, return_mels=False, verbose=False, slices=1, max_chunk_size=None, force_cpu=False, original_ar=False, original_diffusion=False):
|
||||
"""
|
||||
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
||||
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
|
||||
properties.
|
||||
:param force_cpu:
|
||||
:param max_chunk_size:
|
||||
:param slices:
|
||||
:param verbose:
|
||||
:param return_mels:
|
||||
:param original_diffusion:
|
||||
:param original_ar:
|
||||
:param voice_samples: List of 2 or more ~10 second reference clips,
|
||||
which should be torch tensors containing 22.05kHz waveform data.
|
||||
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
|
||||
"""
|
||||
|
||||
with torch.no_grad():
|
||||
|
@ -530,8 +539,7 @@ class TextToSpeech:
|
|||
if original_ar:
|
||||
samples = [resampler_22K(sample) for sample in voice_samples]
|
||||
for sample in tqdm(samples, desc="Computing AR conditioning latents..."):
|
||||
auto_conds.append(format_conditioning(sample, device=device, sampling_rate=self.input_sample_rate,
|
||||
cond_length=132300))
|
||||
auto_conds.append(format_conditioning(sample, device=device, sampling_rate=self.input_sample_rate, cond_length=132300))
|
||||
else:
|
||||
samples = [resampler_22K(sample) for sample in voice_samples]
|
||||
concat = torch.cat(samples, dim=-1)
|
||||
|
@ -548,30 +556,27 @@ class TextToSpeech:
|
|||
chunk_size = chunks[0].shape[-1]
|
||||
|
||||
for chunk in tqdm(chunks, desc="Computing AR conditioning latents..."):
|
||||
auto_conds.append(format_conditioning(chunk, device=device, sampling_rate=self.input_sample_rate,
|
||||
cond_length=chunk_size))
|
||||
auto_conds.append(format_conditioning(chunk, device=device, sampling_rate=self.input_sample_rate, cond_length=chunk_size))
|
||||
|
||||
|
||||
if original_diffusion:
|
||||
samples = [resampler_24K(sample) for sample in voice_samples]
|
||||
for sample in tqdm(samples, desc="Computing diffusion conditioning latents..."):
|
||||
sample = pad_or_truncate(sample, 102400)
|
||||
cond_mel = wav_to_univnet_mel(migrate_to_device(sample, device), do_normalization=False,
|
||||
device=self.device)
|
||||
cond_mel = wav_to_univnet_mel(migrate_to_device(sample, device), do_normalization=False, device=self.device)
|
||||
diffusion_conds.append(cond_mel)
|
||||
else:
|
||||
samples = [resampler_24K(sample) for sample in voice_samples]
|
||||
for chunk in tqdm(chunks, desc="Computing diffusion conditioning latents..."):
|
||||
check_for_kill_signal()
|
||||
chunk = pad_or_truncate(chunk, chunk_size)
|
||||
cond_mel = wav_to_univnet_mel(migrate_to_device(chunk, device), do_normalization=False,
|
||||
device=device)
|
||||
cond_mel = wav_to_univnet_mel(migrate_to_device( chunk, device ), do_normalization=False, device=device)
|
||||
diffusion_conds.append(cond_mel)
|
||||
|
||||
auto_conds = torch.stack(auto_conds, dim=1)
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, device )
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
self.autoregressive = migrate_to_device(self.autoregressive,
|
||||
self.device if self.preloaded_tensors else 'cpu')
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, self.device if self.preloaded_tensors else 'cpu' )
|
||||
|
||||
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
||||
self.diffusion = migrate_to_device( self.diffusion, device )
|
||||
|
@ -587,11 +592,9 @@ class TextToSpeech:
|
|||
# Lazy-load the RLG models.
|
||||
if self.rlg_auto is None:
|
||||
self.rlg_auto = RandomLatentConverter(1024).eval()
|
||||
self.rlg_auto.load_state_dict(
|
||||
torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
||||
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
||||
self.rlg_diffusion = RandomLatentConverter(2048).eval()
|
||||
self.rlg_diffusion.load_state_dict(
|
||||
torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
|
||||
self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
|
||||
with torch.no_grad():
|
||||
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0]))
|
||||
|
||||
|
@ -613,8 +616,6 @@ class TextToSpeech:
|
|||
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
|
||||
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
||||
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
||||
'narration': {'num_autoregressive_samples': 30, 'diffusion_iterations': 80, "diffusion_sampler": "DDIM"},
|
||||
'dialogue': {'num_autoregressive_samples': 60, 'diffusion_iterations': 120, "diffusion_sampler": "DDIM"}
|
||||
}
|
||||
settings.update(presets[preset])
|
||||
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
||||
|
@ -624,8 +625,7 @@ class TextToSpeech:
|
|||
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
||||
return_deterministic_state=False,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
||||
max_mel_tokens=500,
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
||||
sample_batch_size=None,
|
||||
autoregressive_model=None,
|
||||
diffusion_model=None,
|
||||
|
@ -710,14 +710,11 @@ class TextToSpeech:
|
|||
text_tokens = migrate_to_device( text_tokens, self.device )
|
||||
|
||||
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
||||
assert text_tokens.shape[
|
||||
-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
||||
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
||||
|
||||
auto_conds = None
|
||||
if voice_samples is not None:
|
||||
auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples,
|
||||
return_mels=True,
|
||||
verbose=True)
|
||||
auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True, verbose=True)
|
||||
elif conditioning_latents is not None:
|
||||
latent_tuple = conditioning_latents
|
||||
if len(latent_tuple) == 2:
|
||||
|
@ -727,8 +724,7 @@ class TextToSpeech:
|
|||
else:
|
||||
auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents()
|
||||
|
||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free,
|
||||
cond_free_k=cond_free_k)
|
||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
||||
|
||||
self.autoregressive_batch_size = get_device_batch_size() if sample_batch_size is None or sample_batch_size == 0 else sample_batch_size
|
||||
|
||||
|
@ -745,7 +741,7 @@ class TextToSpeech:
|
|||
text_tokens = migrate_to_device( text_tokens, self.device )
|
||||
|
||||
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=half_p):
|
||||
for b in tqdm(range(num_batches), desc="Generating autoregressive samples", disable=not verbose):
|
||||
for b in tqdm(range(num_batches), desc="Generating autoregressive samples"):
|
||||
check_for_kill_signal()
|
||||
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens,
|
||||
do_sample=True,
|
||||
|
@ -793,7 +789,8 @@ class TextToSpeech:
|
|||
else:
|
||||
desc = f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%"
|
||||
|
||||
for batch in tqdm(samples, desc=desc, disable=not verbose):
|
||||
|
||||
for batch in tqdm(samples, desc=desc):
|
||||
check_for_kill_signal()
|
||||
for i in range(batch.shape[0]):
|
||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||
|
@ -804,8 +801,7 @@ class TextToSpeech:
|
|||
if auto_conds is not None and cvvp_amount > 0:
|
||||
cvvp_accumulator = 0
|
||||
for cl in range(auto_conds.shape[1]):
|
||||
cvvp_accumulator = cvvp_accumulator + self.cvvp(
|
||||
auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
||||
cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
||||
cvvp = cvvp_accumulator / auto_conds.shape[1]
|
||||
if cvvp_amount == 1:
|
||||
clip_results.append(cvvp)
|
||||
|
@ -819,12 +815,16 @@ class TextToSpeech:
|
|||
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
if k < num_autoregressive_samples:
|
||||
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||
else:
|
||||
best_results = samples
|
||||
|
||||
if not self.preloaded_tensors:
|
||||
self.clvp = migrate_to_device( self.clvp, 'cpu' )
|
||||
self.cvvp = migrate_to_device( self.cvvp, 'cpu' )
|
||||
|
||||
|
||||
if get_device_name() == "dml":
|
||||
text_tokens = migrate_to_device( text_tokens, 'cpu' )
|
||||
best_results = migrate_to_device( best_results, 'cpu' )
|
||||
|
@ -840,11 +840,8 @@ class TextToSpeech:
|
|||
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
||||
# results, but will increase memory usage.
|
||||
best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
|
||||
best_results,
|
||||
torch.tensor([best_results.shape[
|
||||
-1] * self.autoregressive.mel_length_compression],
|
||||
device=text_tokens.device),
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
|
||||
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
|
||||
diffusion_conditioning = migrate_to_device( diffusion_conditioning, self.device )
|
||||
|
@ -881,11 +878,8 @@ class TextToSpeech:
|
|||
break
|
||||
|
||||
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning,
|
||||
temperature=diffusion_temperature,
|
||||
desc="Transforming autoregressive outputs into audio..",
|
||||
sampler=diffusion_sampler,
|
||||
input_sample_rate=self.input_sample_rate,
|
||||
output_sample_rate=self.output_sample_rate)
|
||||
temperature=diffusion_temperature, desc="Transforming autoregressive outputs into audio..", sampler=diffusion_sampler,
|
||||
input_sample_rate=self.input_sample_rate, output_sample_rate=self.output_sample_rate)
|
||||
|
||||
wav = self.vocoder.inference(mel)
|
||||
wav_candidates.append(wav)
|
||||
|
@ -900,7 +894,6 @@ class TextToSpeech:
|
|||
t = migrate_to_device( t, 'cpu' if get_device_name() == "dml" else self.device)
|
||||
return self.aligner.redact(t, text, self.output_sample_rate).unsqueeze(1)
|
||||
return clip
|
||||
|
||||
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]
|
||||
|
||||
if len(wav_candidates) > 1:
|
||||
|
|
|
@ -283,9 +283,9 @@ class MelEncoder(nn.Module):
|
|||
|
||||
|
||||
class UnifiedVoice(nn.Module):
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_prompt_tokens=2, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
mel_length_compression=1024, number_text_tokens=256,
|
||||
start_text_token=None, number_mel_codes=8194, start_mel_token=8192,
|
||||
start_text_token=None, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192,
|
||||
stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True,
|
||||
checkpointing=True, types=1):
|
||||
"""
|
||||
|
@ -295,6 +295,7 @@ class UnifiedVoice(nn.Module):
|
|||
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
||||
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
||||
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
||||
max_prompt_tokens: compat set to 2, 70 for XTTS
|
||||
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
||||
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
||||
number_text_tokens:
|
||||
|
@ -311,7 +312,7 @@ class UnifiedVoice(nn.Module):
|
|||
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token
|
||||
self.stop_text_token = 0
|
||||
self.stop_text_token = stop_text_token
|
||||
self.number_mel_codes = number_mel_codes
|
||||
self.start_mel_token = start_mel_token
|
||||
self.stop_mel_token = stop_mel_token
|
||||
|
@ -319,6 +320,7 @@ class UnifiedVoice(nn.Module):
|
|||
self.heads = heads
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.max_text_tokens = max_text_tokens
|
||||
self.max_prompt_tokens = max_prompt_tokens
|
||||
self.model_dim = model_dim
|
||||
self.max_conditioning_inputs = max_conditioning_inputs
|
||||
self.mel_length_compression = mel_length_compression
|
||||
|
@ -353,7 +355,7 @@ class UnifiedVoice(nn.Module):
|
|||
module.weight.data.normal_(mean=0.0, std=.02)
|
||||
|
||||
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + self.max_prompt_tokens
|
||||
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
|
@ -494,7 +496,7 @@ class UnifiedVoice(nn.Module):
|
|||
|
||||
def inference_speech(self, speech_conditioning_latent, text_inputs, input_tokens=None, num_return_sequences=1,
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + self.max_prompt_tokens
|
||||
if not hasattr(self, 'inference_model'):
|
||||
self.post_init_gpt2_config(kv_cache=self.kv_cache)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user