tortoise-tts/read.py
2022-04-10 19:29:42 -06:00

77 lines
3.3 KiB
Python

import argparse
import os
import torch
import torch.nn.functional as F
import torchaudio
from api import TextToSpeech, load_conditioning
from utils.audio import load_audio
from utils.tokenizer import VoiceBpeTokenizer
def split_and_recombine_text(texts, desired_length=200, max_len=300):
# TODO: also split across '!' and '?'. Attempt to keep quotations together.
texts = [s.strip() + "." for s in texts.split('.')]
i = 0
while i < len(texts):
ltxt = texts[i]
if len(ltxt) >= desired_length or i == len(texts)-1:
i += 1
continue
if len(ltxt) + len(texts[i+1]) > max_len:
i += 1
continue
texts[i] = f'{ltxt} {texts[i+1]}'
texts.pop(i+1)
return texts
if __name__ == '__main__':
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
# has shown that the model does not generalize to new voices very well.
preselected_cond_voices = {
# Male voices
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],
'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],
'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],
'obama': ['voices/obama/1.wav', 'voices/obama/2.wav'],
'carlin': ['voices/carlin/1.wav', 'voices/carlin/2.wav'],
# Female voices
'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],
'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],
'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],
'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],
'lj': ['voices/lj/1.wav', 'voices/lj/2.wav'],
}
parser = argparse.ArgumentParser()
parser.add_argument('-textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice')
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=256)
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/longform/')
args = parser.parse_args()
os.makedirs(args.output_path, exist_ok=True)
with open(args.textfile, 'r', encoding='utf-8') as f:
text = ''.join([l for l in f.readlines()])
texts = split_and_recombine_text(text)
tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
priors = []
for j, text in enumerate(texts):
cond_paths = preselected_cond_voices[args.voice]
conds = priors.copy()
for cond_path in cond_paths:
c = load_audio(cond_path, 22050)
conds.append(c)
gen = tts.tts(text, conds, num_autoregressive_samples=args.num_samples, temperature=.7, top_p=.7)
torchaudio.save(os.path.join(args.output_path, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
priors.append(torchaudio.functional.resample(gen, 24000, 22050).squeeze(0))
while len(priors) > 2:
priors.pop(0)