added api_name for generation, added whisperx backend, relocated use whispercpp option to whisper backend list

This commit is contained in:
mrq 2023-03-06 05:21:33 +00:00
parent 788a957f79
commit 0e3bbc55f8
4 changed files with 53 additions and 26 deletions

View File

@ -1,4 +1,6 @@
git+https://github.com/openai/whisper.git
git+https://github.com/m-bain/whisperx.git
more-itertools
ffmpeg-python
gradio

View File

@ -37,8 +37,11 @@ from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.device import get_device_name, set_device_name
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"]
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
args = None
@ -1001,12 +1004,13 @@ def whisper_transcribe( file, language=None ):
if not whisper_model:
load_whisper_model(language=language)
if not args.whisper_cpp:
if args.whisper_backend == "openai/whisper":
if not language:
language = None
return whisper_model.transcribe(file, language=language)
elif args.whisper_backend == "lightmare/whispercpp":
res = whisper_model.transcribe(file)
segments = whisper_model.extract_text_and_timestamps( res )
@ -1023,6 +1027,15 @@ def whisper_transcribe( file, language=None ):
return result
# credit to https://git.ecker.tech/yqxtqymn for the busywork of getting this added
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
result = whisper_model.transcribe(file)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result_aligned = whisperx.align(result["segments"], model_a, metadata, file, device)
return result
def prepare_dataset( files, outdir, language=None, progress=None ):
unload_tts()
@ -1425,8 +1438,8 @@ def setup_args():
'output-volume': 1,
'autoregressive-model': None,
'whisper-backend': 'openai/whisper',
'whisper-model': "base",
'whisper-cpp': False,
'training-default-halfp': False,
'training-default-bnb': True,
@ -1464,8 +1477,8 @@ def setup_args():
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp, m-bain/whisperx)")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--whisper-cpp", default=default_arguments['whisper-cpp'], action='store_true', help="Leverages lightmare/whispercpp for transcription")
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb")
@ -1499,7 +1512,7 @@ def setup_args():
return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_model, whisper_cpp, training_default_halfp, training_default_bnb ):
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
global args
args.listen = listen
@ -1523,8 +1536,8 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
args.output_volume = output_volume
args.autoregressive_model = autoregressive_model
args.whisper_backend = whisper_backend
args.whisper_model = whisper_model
args.whisper_cpp = whisper_cpp
args.training_default_halfp = training_default_halfp
args.training_default_bnb = training_default_bnb
@ -1555,8 +1568,8 @@ def save_args_settings():
'output-volume': args.output_volume,
'autoregressive-model': args.autoregressive_model,
'whisper-backend': args.whisper_backend,
'whisper-model': args.whisper_model,
'whisper-cpp': args.whisper_cpp,
'training-default-halfp': args.training_default_halfp,
'training-default-bnb': args.training_default_bnb,
@ -1762,6 +1775,12 @@ def unload_voicefixer():
def load_whisper_model(language=None, model_name=None, progress=None):
global whisper_model
if args.whisper_backend not in WHISPER_BACKENDS:
raise Exception(f"unavailable backend: {args.whisper_backend}")
if args.whisper_backend != "m-bain/whisperx" and model_name == "large-v2":
raise Exception("large-v2 is only available for m-bain/whisperx backend")
if not model_name:
model_name = args.whisper_model
else:
@ -1774,16 +1793,20 @@ def load_whisper_model(language=None, model_name=None, progress=None):
notify_progress(f"Loading Whisper model: {model_name}", progress)
if args.whisper_cpp:
if args.whisper_backend == "openai/whisper":
import whisper
whisper_model = whisper.load_model(model_name)
elif args.whisper_backend == "lightmare/whispercpp":
from whispercpp import Whisper
if not language:
language = 'auto'
b_lang = language.encode('ascii')
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
else:
import whisper
whisper_model = whisper.load_model(model_name)
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
whisper_model = whisperx.load_model(model_name, device)
print("Loaded Whisper model")

View File

@ -589,10 +589,10 @@ def setup_gradio():
autoregressive_model_dropdown = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0])
whisper_backend = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
whisper_model_dropdown = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model)
use_whisper_cpp = gr.Checkbox(label="Use Whisper.cpp", value=args.whisper_cpp)
exec_inputs = exec_inputs + [ autoregressive_model_dropdown, whisper_model_dropdown, use_whisper_cpp, training_halfp, training_bnb ]
exec_inputs = exec_inputs + [ autoregressive_model_dropdown, whisper_backend, whisper_model_dropdown, training_halfp, training_bnb ]
with gr.Row():
autoregressive_models_update_button = gr.Button(value="Refresh Model List")
@ -732,6 +732,7 @@ def setup_gradio():
submit_event = submit.click(run_generation,
inputs=input_settings,
outputs=[output_audio, source_sample, candidates_list, generation_results],
api_name="generate",
)

View File

@ -3,5 +3,6 @@ git pull
git submodule update --remote
if python -m pip show whispercpp &>/dev/null; then python -m pip install -U git+https://git.ecker.tech/lightmare/whispercpp.py; fi
if python -m pip show whisperx &>/dev/null; then python -m pip install -U git+https://github.com/m-bain/whisperx.git; fi
deactivate