Farewell, parasite

This commit is contained in:
mrq 2023-03-11 16:40:34 +00:00
parent 2424c455cb
commit b90c164778
2 changed files with 8 additions and 32 deletions

View File

@ -1,5 +1,4 @@
git+https://github.com/openai/whisper.git git+https://github.com/openai/whisper.git
git+https://github.com/m-bain/whisperx.git
more-itertools more-itertools
ffmpeg-python ffmpeg-python

View File

@ -39,9 +39,9 @@ from tortoise.utils.device import get_device_name, set_device_name, get_device_c
MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth" MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"] WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"] WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"] WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp"]
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band'] VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band']
GENERATE_SETTINGS_ARGS = None GENERATE_SETTINGS_ARGS = None
@ -1032,7 +1032,7 @@ def whisper_transcribe( file, language=None ):
return whisper_model.transcribe(file, language=language) return whisper_model.transcribe(file, language=language)
elif args.whisper_backend == "lightmare/whispercpp": if args.whisper_backend == "lightmare/whispercpp":
res = whisper_model.transcribe(file) res = whisper_model.transcribe(file)
segments = whisper_model.extract_text_and_timestamps( res ) segments = whisper_model.extract_text_and_timestamps( res )
@ -1046,23 +1046,6 @@ def whisper_transcribe( file, language=None ):
'text': segment[2], 'text': segment[2],
} }
result['segments'].append(reparsed) result['segments'].append(reparsed)
return result
# credit to https://git.ecker.tech/yqxtqymn for the busywork of getting this added
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
result = whisper_model.transcribe(file)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result_aligned = whisperx.align(result["segments"], model_a, metadata, file, device)
for i in range(len(result_aligned['segments'])):
del result_aligned['segments'][i]['word-segments']
del result_aligned['segments'][i]['char-segments']
result['segments'] = result_aligned['segments']
return result return result
def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_audio=False, progress=None ): def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_audio=False, progress=None ):
@ -1072,9 +1055,6 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_a
if whisper_model is None: if whisper_model is None:
load_whisper_model(language=language) load_whisper_model(language=language)
if args.whisper_backend == "m-bain/whisperx" and slice_audio:
print("! CAUTION ! Slicing audio with whisperx is terrible. Please consider using a different whisper backend if you want to slice audio.")
os.makedirs(f'{outdir}/audio/', exist_ok=True) os.makedirs(f'{outdir}/audio/', exist_ok=True)
results = {} results = {}
@ -1708,7 +1688,7 @@ def setup_args():
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output") parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.") parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.")
parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp, m-bain/whisperx)") parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp)")
parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.") parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.")
parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp") parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp")
@ -2069,12 +2049,13 @@ def unload_voicefixer():
def load_whisper_model(language=None, model_name=None, progress=None): def load_whisper_model(language=None, model_name=None, progress=None):
global whisper_model global whisper_model
if model_name == "m-bain/whisperx":
print("WhisperX has been removed. Reverting to openai/whisper. Apologies for the inconvenience.")
model_name = "openai/whisper"
if args.whisper_backend not in WHISPER_BACKENDS: if args.whisper_backend not in WHISPER_BACKENDS:
raise Exception(f"unavailable backend: {args.whisper_backend}") raise Exception(f"unavailable backend: {args.whisper_backend}")
if args.whisper_backend != "m-bain/whisperx" and model_name == "large-v2":
raise Exception("large-v2 is only available for m-bain/whisperx backend")
if not model_name: if not model_name:
model_name = args.whisper_model model_name = args.whisper_model
else: else:
@ -2097,10 +2078,6 @@ def load_whisper_model(language=None, model_name=None, progress=None):
b_lang = language.encode('ascii') b_lang = language.encode('ascii')
whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang) whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang)
elif args.whisper_backend == "m-bain/whisperx":
import whisperx
device = "cuda" if get_device_name() == "cuda" else "cpu"
whisper_model = whisperx.load_model(model_name, device)
print("Loaded Whisper model") print("Loaded Whisper model")