1
1
forked from mrq/tortoise-tts
tortoise-tts/app.py

169 lines
5.6 KiB
Python
Raw Normal View History

2023-02-02 21:13:28 +00:00
import os
import argparse
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"random", # special option for random voice
"custom", # special option for custom voice
"disabled", # special option for disabled voice
]
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature):
if voice != "custom":
voices = [voice]
else:
voices = []
if emotion != "None/Custom":
text = f"[I am really {emotion.lower()},] {text}"
elif prompt.strip() != "":
text = f"[{prompt},] {text}"
c = None
if voice == "custom":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing custom voice")
c = load_audio(mic_audio, 22050)
if len(voices) == 1 or len(voices) == 0:
if voice == "custom":
voice_samples, conditioning_latents = [c], None
else:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
if voice == "custom":
voice_samples.extend([c])
sample_voice = voice_samples[0] if len(voice_samples) else None
start_time = time.time()
if preset == "custom":
gen, _ = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="standard",
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
)
else:
gen, _ = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
temperature=temperature,
)
with open("Tortoise_TTS_Runs.log", "a") as f:
f.write(
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(text)
if isinstance(gen, list):
for j, g in enumerate(gen):
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen[0].squeeze().cpu().numpy()),
)
else:
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen.squeeze().cpu().numpy()),
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
args = parser.parse_args()
text = gr.Textbox(lines=4, label="Text:")
emotion = gr.Radio(
["None/Custom", "Happy", "Sad", "Angry", "Disgusted", "Arrogant"],
value="None/Custom",
label="Select emotion:",
type="value",
)
prompt = gr.Textbox(lines=1, label="Enter prompt if [Custom] emotion:")
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "custom"],
value="custom",
label="Preset mode (determines quality with tradeoff over speed):",
type="value",
)
candidates = gr.Number(value=1, precision=0, label="Candidates")
num_autoregressive_samples = gr.Number(value=128, precision=0, label="Autoregressive samples:")
diffusion_iterations = gr.Number(value=128, precision=0, label="Diffusion iterations (quality in audio clip)")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
value="angie",
label="Select voice:",
type="value",
)
mic_audio = gr.Audio(
label="Record voice (when selected custom):",
source="microphone",
type="filepath",
)
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
selected_voice = gr.Audio(label="Sample of selected voice (first):")
output_audio = gr.Audio(label="Output:")
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature
],
outputs=[selected_voice, output_audio],
)
interface.queue().launch(share=args.share)
if __name__ == "__main__":
tts = TextToSpeech()
with open("Tortoise_TTS_Runs.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Logs, {datetime.now()}-------------------------\n"
)
main()