1
1
forked from mrq/tortoise-tts
tortoise-tts/tortoise/models/bigvgan.py

485 lines
18 KiB
Python
Raw Normal View History

# Copyright (c) 2022 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
# LICENSE is in incl_licenses directory.
import json
import os
import torch, torch.utils.data
import tortoise.models.activations as activations
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from tortoise.models.alias_free_torch import *
from librosa.filters import mel as librosa_mel_fn
LRELU_SLOPE = 0.1
class AMPBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
super(AMPBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
acts1, acts2 = self.activations[::2], self.activations[1::2]
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
xt = a1(x)
xt = c1(xt)
xt = a2(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class AMPBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
super(AMPBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
self.num_layers = len(self.convs) # total number of conv layers
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
self.activations = nn.ModuleList([
Activation1d(
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
for _ in range(self.num_layers)
])
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'.")
def forward(self, x):
for c, a in zip(self.convs, self.activations):
xt = a(x)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class BigVGAN(nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
def __init__(self, config=None, data=None):
super(BigVGAN, self).__init__()
"""
with open(os.path.join(os.path.dirname(__file__), 'config.json'), 'r') as f:
data = f.read()
"""
if config and data is None:
with open(config, 'r') as f:
data = f.read()
jsonConfig = json.loads(data)
elif data is not None:
if isinstance(data, str):
jsonConfig = json.loads(data)
else:
jsonConfig = data
else:
raise Exception("no config specified")
global h
h = AttrDict(jsonConfig)
self.mel_channel = h.num_mels
self.noise_dim = h.n_fft
self.hop_length = h.hop_size
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
# pre conv
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(nn.ModuleList([
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
h.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k - u) // 2))
]))
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
# post conv
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
self.activation_post = Activation1d(activation=activation_post)
else:
raise NotImplementedError(
"activation incorrectly specified. check the config file and look for 'activation'.")
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
# weight initialization
for i in range(len(self.ups)):
self.ups[i].apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self,x, c):
# pre conv
x = self.conv_pre(x)
for i in range(self.num_upsamples):
# upsampling
for i_up in range(len(self.ups[i])):
x = self.ups[i][i_up](x)
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
for l_i in l:
remove_weight_norm(l_i)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
def inference(self, c, z=None):
# pad input mel with zeros to cut artifact
# see https://github.com/seungwonpark/melgan/issues/8
zero = torch.full((c.shape[0], h.num_mels, 10), -11.5129).to(c.device)
mel = torch.cat((c, zero), dim=2)
if z is None:
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device)
audio = self.forward(mel, z)
audio = audio[:, :, :-(self.hop_length * 10)]
audio = audio.clamp(min=-1, max=1)
return audio
def eval(self, inference=False):
super(BigVGAN, self).eval()
# don't remove weight norm while validation in training loop
if inference:
self.remove_weight_norm()
class DiscriminatorP(nn.Module):
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.d_mult = h.discriminator_channel_mult
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(nn.Module):
def __init__(self, h):
super(MultiPeriodDiscriminator, self).__init__()
self.mpd_reshapes = h.mpd_reshapes
print("mpd_reshapes: {}".format(self.mpd_reshapes))
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
self.discriminators = nn.ModuleList(discriminators)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorR(nn.Module):
def __init__(self, cfg, resolution):
super().__init__()
self.resolution = resolution
assert len(self.resolution) == 3, \
"MRD layer requires list with len=3, got {}".format(self.resolution)
self.lrelu_slope = LRELU_SLOPE
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
if hasattr(cfg, "mrd_use_spectral_norm"):
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
self.d_mult = cfg.discriminator_channel_mult
if hasattr(cfg, "mrd_channel_mult"):
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
self.d_mult = cfg.mrd_channel_mult
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
])
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
def forward(self, x):
fmap = []
x = self.spectrogram(x)
x = x.unsqueeze(1)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, self.lrelu_slope)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def spectrogram(self, x):
n_fft, hop_length, win_length = self.resolution
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
x = x.squeeze(1)
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
x = torch.view_as_real(x) # [B, F, TT, 2]
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
return mag
class MultiResolutionDiscriminator(nn.Module):
def __init__(self, cfg, debug=False):
super().__init__()
self.resolutions = cfg.resolutions
assert len(self.resolutions) == 3, \
"MRD requires list of list with len=3, each element having a list with len=3. got {}". \
format(self.resolutions)
self.discriminators = nn.ModuleList(
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(x=y)
y_d_g, fmap_g = d(x=y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def get_mel(x):
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = torch.nn.utils.spectral_normalize_torch(spec)
return spec
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg ** 2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
if __name__ == '__main__':
model = BigVGAN()
c = torch.randn(3, 100, 10)
z = torch.randn(3, 64, 10)
print(c.shape)
y = model(c, z)
print(y.shape)
assert y.shape == torch.Size([3, 1, 2560])
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(pytorch_total_params)