2022-03-29 19:59:59 +00:00
|
|
|
import os
|
|
|
|
from random import shuffle
|
|
|
|
|
|
|
|
import torchaudio
|
|
|
|
|
|
|
|
from api import TextToSpeech
|
|
|
|
from utils.audio import load_audio
|
|
|
|
|
|
|
|
|
|
|
|
def permutations(args):
|
|
|
|
res = []
|
|
|
|
k = next(iter(args.keys()))
|
|
|
|
vals = args[k]
|
|
|
|
del args[k]
|
|
|
|
if not args:
|
|
|
|
return [{k: v} for v in vals]
|
|
|
|
lower = permutations(args)
|
|
|
|
for v in vals:
|
|
|
|
for l in lower:
|
|
|
|
lc = l.copy()
|
|
|
|
lc[k] = v
|
|
|
|
res.append(lc)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
2022-04-01 17:34:40 +00:00
|
|
|
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\std_sweep3'
|
2022-03-29 19:59:59 +00:00
|
|
|
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
|
|
|
|
|
|
|
arg_ranges = {
|
2022-04-01 17:34:40 +00:00
|
|
|
'top_p': [.3,.4,.5,.6],
|
|
|
|
'temperature': [.5, .6],
|
2022-03-29 19:59:59 +00:00
|
|
|
}
|
|
|
|
cfgs = permutations(arg_ranges)
|
|
|
|
shuffle(cfgs)
|
|
|
|
|
|
|
|
for cfg in cfgs:
|
2022-04-01 17:34:40 +00:00
|
|
|
outpath = os.path.join(outpath_base, f'{cfg["top_p"]}_{cfg["temperature"]}')
|
2022-03-29 19:59:59 +00:00
|
|
|
os.makedirs(outpath, exist_ok=True)
|
|
|
|
os.makedirs(outpath_real, exist_ok=True)
|
|
|
|
with open(fname, 'r', encoding='utf-8') as f:
|
|
|
|
lines = [l.strip().split('\t') for l in f.readlines()]
|
|
|
|
|
|
|
|
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
|
|
|
tts = TextToSpeech()
|
|
|
|
for e, line in enumerate(lines):
|
|
|
|
transcript = line[0]
|
|
|
|
if len(transcript) > 120:
|
|
|
|
continue # We need to support this, but cannot yet.
|
|
|
|
path = os.path.join(os.path.dirname(fname), line[1])
|
|
|
|
cond_audio = load_audio(path, 22050)
|
|
|
|
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
2022-04-01 17:34:40 +00:00
|
|
|
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200,
|
|
|
|
repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
|
|
|
|
diffusion_temperature=.7, cond_free_k=2, **cfg)
|
2022-03-29 19:59:59 +00:00
|
|
|
down = torchaudio.functional.resample(sample, 24000, 22050)
|
|
|
|
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
|
|
|
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
|
|
|
recorder.write(f'{transcript}\t{fout_path}\n')
|
|
|
|
recorder.flush()
|
|
|
|
recorder.close()
|