1
1
forked from mrq/tortoise-tts

add use_deepspeed to contructor and update method post_init_gpt2_config

This commit is contained in:
ken11o2 2023-09-04 19:12:13 +00:00
parent ac97c17bf7
commit 18adfaf785

View File

@ -259,7 +259,8 @@ class TextToSpeech:
unsqueeze_sample_batches=False, unsqueeze_sample_batches=False,
input_sample_rate=22050, output_sample_rate=24000, input_sample_rate=22050, output_sample_rate=24000,
autoregressive_model_path=None, diffusion_model_path=None, vocoder_model=None, tokenizer_json=None, autoregressive_model_path=None, diffusion_model_path=None, vocoder_model=None, tokenizer_json=None,
): # ):
use_deepspeed=False): # Add use_deepspeed parameter
""" """
Constructor Constructor
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing :param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
@ -280,7 +281,8 @@ class TextToSpeech:
self.output_sample_rate = output_sample_rate self.output_sample_rate = output_sample_rate
self.minor_optimizations = minor_optimizations self.minor_optimizations = minor_optimizations
self.unsqueeze_sample_batches = unsqueeze_sample_batches self.unsqueeze_sample_batches = unsqueeze_sample_batches
self.use_deepspeed = use_deepspeed # Store use_deepspeed as an instance variable
print(f'use_deepspeed api_debug {use_deepspeed}')
# for clarity, it's simpler to split these up and just predicate them on requesting VRAM-consuming optimizations # for clarity, it's simpler to split these up and just predicate them on requesting VRAM-consuming optimizations
self.preloaded_tensors = minor_optimizations self.preloaded_tensors = minor_optimizations
self.use_kv_cache = minor_optimizations self.use_kv_cache = minor_optimizations
@ -359,7 +361,7 @@ class TextToSpeech:
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False).cpu().eval() train_solo_embeddings=False).cpu().eval()
self.autoregressive.load_state_dict(torch.load(self.autoregressive_model_path)) self.autoregressive.load_state_dict(torch.load(self.autoregressive_model_path))
self.autoregressive.post_init_gpt2_config(kv_cache=self.use_kv_cache) self.autoregressive.post_init_gpt2_config(use_deepspeed=self.use_deepspeed, kv_cache=self.use_kv_cache)
if self.preloaded_tensors: if self.preloaded_tensors:
self.autoregressive = migrate_to_device( self.autoregressive, self.device ) self.autoregressive = migrate_to_device( self.autoregressive, self.device )