forked from mrq/tortoise-tts
fixed silently crashing from enabling kv_cache-ing if using the DirectML backend, throw an error when reading a generated audio file that does not have any embedded metadata in it, cleaned up the blocks of code that would DMA/transfer tensors/models between GPU and CPU
This commit is contained in:
parent
94757f5b41
commit
65f74692a0
19
README.md
19
README.md
|
@ -55,6 +55,7 @@ Outside of the very small prerequisites, everything needed to get TorToiSe worki
|
|||
Windows:
|
||||
* ***Python 3.9***: https://www.python.org/downloads/release/python-3913/
|
||||
- I cannot stress this hard enough. PyTorch under Windows requires a very specific version.
|
||||
- you *might* be able to get away with this if you're not using CUDA as a backend, but I cannot make any promises.
|
||||
* Git (optional): https://git-scm.com/download/win
|
||||
* CUDA drivers, if NVIDIA
|
||||
|
||||
|
@ -79,17 +80,21 @@ Afterwards, run the setup script, depending on your GPU, to automatically set th
|
|||
|
||||
If you've done everything right, you shouldn't have any errors.
|
||||
|
||||
#####
|
||||
|
||||
##### Note on DirectML Support
|
||||
|
||||
PyTorch-DirectML is very, very experimental and is still not production quality. There's some headaches with the need for hairy kludgy patches.
|
||||
|
||||
These patches rely on transfering the tensor between the GPU and CPU as a hotfix, so performance is definitely harmed.
|
||||
These patches rely on transfering the tensor between the GPU and CPU as a hotfix for some unimplemented functions, so performance is definitely harmed.
|
||||
|
||||
Both the conditional latent computation and the vocoder pass have to be done on the CPU entirely because of some quirks with DirectML.
|
||||
Both half precision (float16) and use of `kv_cache`ing for the autoregressive sampling pass are disabled when using DirectML
|
||||
* I haven't been assed to find an (elegant) autocast to float16 for the DirectML backend
|
||||
* `kv_cache`ing will silently crash the program if used
|
||||
|
||||
On my 6800XT, VRAM usage climbs almost the entire 16GiB, so be wary if you OOM somehow. Low VRAM flags may NOT have any additional impact from the constant copying anyways.
|
||||
Both the conditional latent computation and the vocoder pass have to be done on the CPU entirely because of some quirks with DirectML:
|
||||
* computing conditional latents will outright crash, I forget the error
|
||||
* performing the vocoder on the GPU will produce garbage audio
|
||||
|
||||
On my 6800XT, VRAM usage climbs almost the entire 16GiB, so be wary if you OOM somehow. The `Low VRAM` flag may NOT have any additional impact from the constant copying anyways, as the models and tensors already swap between CPU and GPU.
|
||||
|
||||
For AMD users, I still might suggest using Linux+ROCm as it's (relatively) headache free, but I had stability problems.
|
||||
|
||||
|
@ -136,8 +141,8 @@ I hate to be a hardass over it, but below are some errors that come from not fol
|
|||
- I used to have a setup script using conda as an environment, but it's bloat and a headache to use, so I can't keep it around.
|
||||
* `No hardware acceleration is available, falling back to CPU...`: you do not have a CUDA runtime/drivers installed. Please install them.
|
||||
- I do not have a link for it, as it literally worked on my machine with the basic drivers for my 2060.
|
||||
* `[a silent crash during generating samples with DirectML](https://git.ecker.tech/mrq/tortoise-tts/attachments/8d25ca63-d72b-4448-9483-d97cfe8eb677)`: install python3.9.
|
||||
- I'm not too sure why this is so, but it works for me under 3.9, but not 3.10.
|
||||
|
||||
If you already have a `tortoise-venv` folder after installing the correct python version, delete that folder, as it will still use the previous version of python.
|
||||
|
||||
## Preparing Voice Samples
|
||||
|
||||
|
|
110
tortoise/api.py
110
tortoise/api.py
|
@ -230,6 +230,13 @@ class TextToSpeech:
|
|||
self.output_sample_rate = output_sample_rate
|
||||
self.minor_optimizations = minor_optimizations
|
||||
|
||||
# for clarity, it's simpler to split these up and just predicate them on requesting VRAM-consuming optimizations
|
||||
self.preloaded_tensors = minor_optimizations
|
||||
self.use_kv_cache = minor_optimizations
|
||||
if get_device_name() == "dml": # does not work with DirectML
|
||||
print("KV caching requested but not supported with the DirectML backend, disabling...")
|
||||
self.use_kv_cache = False
|
||||
|
||||
self.models_dir = models_dir
|
||||
self.autoregressive_batch_size = get_device_batch_size() if autoregressive_batch_size is None or autoregressive_batch_size == 0 else autoregressive_batch_size
|
||||
self.enable_redaction = enable_redaction
|
||||
|
@ -249,7 +256,7 @@ class TextToSpeech:
|
|||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)))
|
||||
self.autoregressive.post_init_gpt2_config(kv_cache=minor_optimizations)
|
||||
self.autoregressive.post_init_gpt2_config(kv_cache=self.use_kv_cache)
|
||||
|
||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
|
@ -272,7 +279,7 @@ class TextToSpeech:
|
|||
self.rlg_auto = None
|
||||
self.rlg_diffusion = None
|
||||
|
||||
if self.minor_optimizations:
|
||||
if self.preloaded_tensors:
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
self.diffusion = self.diffusion.to(self.device)
|
||||
self.clvp = self.clvp.to(self.device)
|
||||
|
@ -284,7 +291,7 @@ class TextToSpeech:
|
|||
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
||||
self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir)))
|
||||
|
||||
if self.minor_optimizations:
|
||||
if self.preloaded_tensors:
|
||||
self.cvvp = self.cvvp.to(self.device)
|
||||
|
||||
def get_conditioning_latents(self, voice_samples, return_mels=False, verbose=False, progress=None, chunk_size=None, max_chunk_size=None, chunk_tensors=True):
|
||||
|
@ -295,6 +302,7 @@ class TextToSpeech:
|
|||
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
# computing conditional latents requires being done on the CPU if using DML because M$ still hasn't implemented some core functions
|
||||
device = 'cpu' if get_device_name() == "dml" else self.device
|
||||
|
||||
voice_samples = [v.to(device) for v in voice_samples]
|
||||
|
@ -306,6 +314,14 @@ class TextToSpeech:
|
|||
auto_conds.append(format_conditioning(vs, device=device, sampling_rate=self.input_sample_rate))
|
||||
|
||||
auto_conds = torch.stack(auto_conds, dim=1)
|
||||
|
||||
if get_device_name() == "dml":
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
|
||||
if self.preloaded_tensors:
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
diffusion_conds = []
|
||||
|
||||
|
@ -343,27 +359,13 @@ class TextToSpeech:
|
|||
|
||||
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
||||
|
||||
# required since DML implementation screams about falling back to CPU, but crashes anyways
|
||||
if self.minor_optimizations:
|
||||
if get_device_name() == "dml":
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
self.diffusion = self.diffusion.cpu()
|
||||
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
||||
self.diffusion = self.diffusion.to(self.device)
|
||||
else:
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
||||
else:
|
||||
self.autoregressive = self.autoregressive.to(device)
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
self.diffusion = self.diffusion.to(device)
|
||||
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
||||
if get_device_name() == "dml":
|
||||
self.diffusion = self.diffusion.cpu()
|
||||
|
||||
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
||||
|
||||
if self.preloaded_tensors:
|
||||
self.diffusion = self.diffusion.to(self.device)
|
||||
|
||||
if return_mels:
|
||||
return auto_latent, diffusion_latent, auto_conds, diffusion_conds
|
||||
|
@ -462,7 +464,9 @@ class TextToSpeech:
|
|||
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
||||
Sample rate is 24kHz.
|
||||
"""
|
||||
if get_device_name() == "dml":
|
||||
|
||||
if get_device_name() == "dml" and half_p:
|
||||
print("Float16 requested but not supported with the DirectML backend, disabling...")
|
||||
half_p = False
|
||||
|
||||
self.diffusion.enable_fp16 = half_p
|
||||
|
@ -484,11 +488,6 @@ class TextToSpeech:
|
|||
else:
|
||||
auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents()
|
||||
|
||||
auto_conditioning = auto_conditioning.to(self.device)
|
||||
diffusion_conditioning = diffusion_conditioning.to(self.device)
|
||||
if auto_conds is not None:
|
||||
auto_conds = auto_conds.to(self.device)
|
||||
|
||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
||||
|
||||
self.autoregressive_batch_size = get_device_batch_size() if sample_batch_size is None or sample_batch_size == 0 else sample_batch_size
|
||||
|
@ -500,10 +499,11 @@ class TextToSpeech:
|
|||
num_autoregressive_samples = 1
|
||||
stop_mel_token = self.autoregressive.stop_mel_token
|
||||
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
||||
|
||||
if not self.minor_optimizations:
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
auto_conditioning = auto_conditioning.to(self.device)
|
||||
text_tokens = text_tokens.to(self.device)
|
||||
|
||||
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=half_p):
|
||||
for b in tqdm_override(range(num_batches), verbose=verbose, progress=progress, desc="Generating autoregressive samples"):
|
||||
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens,
|
||||
|
@ -519,8 +519,15 @@ class TextToSpeech:
|
|||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||
samples.append(codes)
|
||||
|
||||
if not self.preloaded_tensors:
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
auto_conditioning = auto_conditioning.cpu()
|
||||
|
||||
clip_results = []
|
||||
|
||||
if auto_conds is not None:
|
||||
auto_conds = auto_conds.to(self.device)
|
||||
|
||||
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=half_p):
|
||||
if not self.minor_optimizations:
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
@ -558,47 +565,54 @@ class TextToSpeech:
|
|||
else:
|
||||
clip_results.append(clvp)
|
||||
|
||||
if not self.preloaded_tensors and auto_conds is not None:
|
||||
auto_conds = auto_conds.cpu()
|
||||
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||
|
||||
|
||||
if not self.minor_optimizations:
|
||||
if not self.preloaded_tensors:
|
||||
self.clvp = self.clvp.cpu()
|
||||
if self.cvvp is not None:
|
||||
self.cvvp = self.cvvp.cpu()
|
||||
|
||||
del samples
|
||||
|
||||
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
||||
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
||||
# results, but will increase memory usage.
|
||||
if not self.minor_optimizations:
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
if get_device_name() == "dml":
|
||||
text_tokens = text_tokens.cpu()
|
||||
best_results = best_results.cpu()
|
||||
auto_conditioning = auto_conditioning.cpu()
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
else:
|
||||
#text_tokens = text_tokens.to(self.device)
|
||||
#best_results = best_results.to(self.device)
|
||||
auto_conditioning = auto_conditioning.to(self.device)
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
|
||||
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
||||
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
||||
# results, but will increase memory usage.
|
||||
best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
|
||||
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
|
||||
diffusion_conditioning = diffusion_conditioning.to(self.device)
|
||||
|
||||
if get_device_name() == "dml":
|
||||
self.autoregressive = self.autoregressive.to(self.device)
|
||||
best_results = best_results.to(self.device)
|
||||
best_latents = best_latents.to(self.device)
|
||||
|
||||
if not self.minor_optimizations:
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
self.vocoder = self.vocoder.cpu()
|
||||
else:
|
||||
if not self.preloaded_tensors:
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
self.diffusion = self.diffusion.to(self.device)
|
||||
self.vocoder = self.vocoder.to(self.device)
|
||||
|
||||
if get_device_name() == "dml":
|
||||
self.vocoder = self.vocoder.cpu()
|
||||
|
||||
|
||||
del text_tokens
|
||||
del auto_conditioning
|
||||
|
@ -626,7 +640,7 @@ class TextToSpeech:
|
|||
wav = self.vocoder.inference(mel)
|
||||
wav_candidates.append(wav.cpu())
|
||||
|
||||
if not self.minor_optimizations:
|
||||
if not self.preloaded_tensors:
|
||||
self.diffusion = self.diffusion.cpu()
|
||||
self.vocoder = self.vocoder.cpu()
|
||||
|
||||
|
|
3
webui.py
3
webui.py
|
@ -334,6 +334,9 @@ def read_generate_settings(file, save_latents=True, save_as_temp=True):
|
|||
elif file[-5:] == ".json":
|
||||
with open(file, 'r') as f:
|
||||
j = json.load(f)
|
||||
|
||||
if j is None:
|
||||
raise gr.Error("No metadata found in audio file to read")
|
||||
|
||||
if 'latents' in j and save_latents:
|
||||
latents = base64.b64decode(j['latents'])
|
||||
|
|
Loading…
Reference in New Issue
Block a user