import math import torch import torch.nn as nn import torch.nn.functional as F import tortoise.utils.torch_intermediary as ml def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): if bias is not None: rest_dim = [1] * (input.ndim - bias.ndim - 1) return ( F.leaky_relu( input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope ) * scale ) else: return F.leaky_relu(input, negative_slope=0.2) * scale class EqualLinear(nn.Module): def __init__( self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1 ): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) return out class RandomLatentConverter(nn.Module): def __init__(self, channels): super().__init__() self.layers = nn.Sequential(*[EqualLinear(channels, channels, lr_mul=.1) for _ in range(5)], # nn.Linear ml.Linear(channels, channels)) self.channels = channels def forward(self, ref): r = torch.randn(ref.shape[0], self.channels, device=ref.device) y = self.layers(r) return y if __name__ == '__main__': model = RandomLatentConverter(512) model(torch.randn(5,512))