1
1
forked from mrq/tortoise-tts
tortoise-tts/app.py

255 lines
9.6 KiB
Python
Executable File

import os
import argparse
import gradio as gr
import torch
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
from tortoise.utils.text import split_and_recombine_text
def generate(text, delimiter, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, progress=gr.Progress()):
if voice != "microphone":
voices = [voice]
else:
voices = []
if emotion == "Custom" and prompt.strip() != "":
text = f"[{prompt},] {text}"
elif emotion != "None":
text = f"[I am really {emotion.lower()},] {text}"
if voice == "microphone":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
mic = load_audio(mic_audio, 22050)
voice_samples, conditioning_latents = [mic], None
else:
voice_samples, conditioning_latents = load_voice(voice)
if voice_samples is not None:
sample_voice = voice_samples[0]
conditioning_latents = tts.get_conditioning_latents(voice_samples)
torch.save(conditioning_latents, os.path.join(f'./tortoise/voices/{voice}/', f'latents.pth'))
voice_samples = None
else:
sample_voice = None
if seed == 0:
seed = None
start_time = time.time()
settings = {
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
'top_p': .8,
'cond_free_k': 2.0, 'diffusion_temperature': 1.0,
'num_autoregressive_samples': num_autoregressive_samples,
'diffusion_iterations': diffusion_iterations,
'voice_samples': voice_samples,
'conditioning_latents': conditioning_latents,
'use_deterministic_seed': seed,
'return_deterministic_state': True,
'k': candidates,
'diffusion_sampler': diffusion_sampler,
'progress': progress,
}
if delimiter == "\\n":
delimiter = "\n"
if delimiter != "" and delimiter in text:
texts = text.split(delimiter)
else:
texts = split_and_recombine_text(text)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
audio_cache = {}
for line, cut_text in enumerate(texts):
print(f"[{str(line+1)}/{str(len(texts))}] Generating line: {cut_text}")
gen, additionals = tts.tts(cut_text, **settings )
seed = additionals[0]
if isinstance(gen, list):
for j, g in enumerate(gen):
audio = g.squeeze(0).cpu()
audio_cache[f"candidate_{j}/result_{line}.wav"] = audio
os.makedirs(os.path.join(outdir, f'candidate_{j}'), exist_ok=True)
torchaudio.save(os.path.join(outdir, f'candidate_{j}/result_{line}.wav'), audio, 24000)
else:
audio = gen.squeeze(0).cpu()
audio_cache[f"result_{line}.wav"] = audio
torchaudio.save(os.path.join(outdir, f'result_{line}.wav'), audio, 24000)
output_voice = None
if len(texts) > 1:
for candidate in range(candidates):
audio_clips = []
for line in range(len(texts)):
if isinstance(gen, list):
piece = audio_cache[f'candidate_{candidate}/result_{line}.wav']
else:
piece = audio_cache[f'result_{line}.wav']
audio_clips.append(piece)
audio_clips = torch.cat(audio_clips, dim=-1)
torchaudio.save(os.path.join(outdir, f'combined_{candidate}.wav'), audio_clips, 24000)
if output_voice is None:
output_voice = (24000, audio_clips.squeeze().cpu().numpy())
else:
if isinstance(gen, list):
output_voice = gen[0]
else:
output_voice = gen
output_voice = (24000, output_voice.squeeze().cpu().numpy())
info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
with open(os.path.join(outdir, f'input.txt'), 'w', encoding="utf-8") as f:
f.write(info)
with open("results.log", "w", encoding="utf-8") as f:
f.write(info)
print(f"Saved to '{outdir}'")
if sample_voice is not None:
sample_voice = (22050, sample_voice.squeeze().cpu().numpy())
audio_clips = []
return (
sample_voice,
output_voice,
seed
)
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def main():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
text = gr.Textbox(lines=4, label="Prompt")
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
type="value",
interactive=True
)
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["microphone"],
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
seed = gr.Number(value=0, precision=0, label="Seed")
preset = gr.Radio(
["Ultra Fast", "Fast", "Standard", "High Quality", "None"],
value="None",
label="Preset",
type="value",
)
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples", interactive=True)
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations", interactive=True)
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
diffusion_sampler = gr.Radio(
["P", "DDIM"],
value="P",
label="Diffusion Samplers",
type="value",
)
prompt.change(fn=lambda value: gr.update(value="Custom"),
inputs=prompt,
outputs=emotion
)
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
inputs=mic_audio,
outputs=voice
)
preset.change(fn=update_presets,
inputs=preset,
outputs=[
num_autoregressive_samples,
diffusion_iterations,
],
)
with gr.Column():
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
submit = gr.Button(value="Generate")
#stop = gr.Button(value="Stop")
submit_event = submit.click(generate,
inputs=[
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler
],
outputs=[selected_voice, output_audio, usedSeed],
)
#stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
demo.queue().launch(share=args.share)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
parser.add_argument("--low-vram", action='store_true', help="Disables some optimizations that increases VRAM usage")
args = parser.parse_args()
tts = TextToSpeech(minor_optimizations=not args.low_vram)
main()