1
1
forked from mrq/tortoise-tts
tortoise-tts/app.py

170 lines
5.5 KiB
Python
Executable File

import os
import argparse
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"random", # special option for random voice
"microphone", # special option for custom voice
"disabled", # special option for disabled voice
]
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature):
if voice != "microphone":
voices = [voice]
else:
voices = []
if emotion == "Custom" and prompt.strip() != "":
text = f"[{prompt},] {text}"
elif emotion != "None":
text = f"[I am really {emotion.lower()},] {text}"
c = None
if voice == "microphone":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
c = load_audio(mic_audio, 22050)
if len(voices) == 1 or len(voices) == 0:
if voice == "microphone":
voice_samples, conditioning_latents = [c], None
else:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
if voice == "microphone":
voice_samples.extend([c])
sample_voice = voice_samples[0] if len(voice_samples) else None
if seed == 0:
seed = None
start_time = time.time()
if preset == "none":
gen, additionals = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="standard",
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
)
seed = additionals[0]
else:
gen, additionals = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
temperature=temperature,
)
seed = additionals[0]
with open("results.log", "a") as f:
f.write(
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(f"{text}\n\nSeed: {seed}")
if isinstance(gen, list):
for j, g in enumerate(gen):
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen[0].squeeze().cpu().numpy()),
seed
)
else:
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen.squeeze().cpu().numpy()),
seed
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
args = parser.parse_args()
text = gr.Textbox(lines=4, label="Prompt")
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
type="value",
)
prompt = gr.Textbox(lines=1, label="Custom Emotion (if selected)")
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "none"],
value="none",
label="Preset",
type="value",
)
candidates = gr.Number(value=1, precision=0, label="Candidates")
num_autoregressive_samples = gr.Number(value=128, precision=0, label="Samples")
diffusion_iterations = gr.Number(value=128, precision=0, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
seed = gr.Number(value=0, precision=0, label="Seed")
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature
],
outputs=[selected_voice, output_audio, usedSeed],
allow_flagging=False
)
interface.queue().launch(share=args.share)
if __name__ == "__main__":
tts = TextToSpeech()
main()