forked from mrq/tortoise-tts
391 lines
14 KiB
Python
391 lines
14 KiB
Python
import functools
|
|
from math import sqrt
|
|
|
|
import torch
|
|
import torch.distributed as distributed
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
|
|
|
|
def default(val, d):
|
|
return val if val is not None else d
|
|
|
|
|
|
def eval_decorator(fn):
|
|
def inner(model, *args, **kwargs):
|
|
was_training = model.training
|
|
model.eval()
|
|
out = fn(model, *args, **kwargs)
|
|
model.train(was_training)
|
|
return out
|
|
return inner
|
|
|
|
|
|
# Quantizer implemented by the rosinality vqvae repo.
|
|
# Credit: https://github.com/rosinality/vq-vae-2-pytorch
|
|
class Quantize(nn.Module):
|
|
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.n_embed = n_embed
|
|
self.decay = decay
|
|
self.eps = eps
|
|
|
|
self.balancing_heuristic = balancing_heuristic
|
|
self.codes = None
|
|
self.max_codes = 64000
|
|
self.codes_full = False
|
|
self.new_return_order = new_return_order
|
|
|
|
embed = torch.randn(dim, n_embed)
|
|
self.register_buffer("embed", embed)
|
|
self.register_buffer("cluster_size", torch.zeros(n_embed))
|
|
self.register_buffer("embed_avg", embed.clone())
|
|
|
|
def forward(self, input, return_soft_codes=False):
|
|
if self.balancing_heuristic and self.codes_full:
|
|
h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes)
|
|
mask = torch.logical_or(h > .9, h < .01).unsqueeze(1)
|
|
ep = self.embed.permute(1,0)
|
|
ea = self.embed_avg.permute(1,0)
|
|
rand_embed = torch.randn_like(ep) * mask
|
|
self.embed = (ep * ~mask + rand_embed).permute(1,0)
|
|
self.embed_avg = (ea * ~mask + rand_embed).permute(1,0)
|
|
self.cluster_size = self.cluster_size * ~mask.squeeze()
|
|
if torch.any(mask):
|
|
print(f"Reset {torch.sum(mask)} embedding codes.")
|
|
self.codes = None
|
|
self.codes_full = False
|
|
|
|
flatten = input.reshape(-1, self.dim)
|
|
dist = (
|
|
flatten.pow(2).sum(1, keepdim=True)
|
|
- 2 * flatten @ self.embed
|
|
+ self.embed.pow(2).sum(0, keepdim=True)
|
|
)
|
|
soft_codes = -dist
|
|
_, embed_ind = soft_codes.max(1)
|
|
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
|
|
embed_ind = embed_ind.view(*input.shape[:-1])
|
|
quantize = self.embed_code(embed_ind)
|
|
|
|
if self.balancing_heuristic:
|
|
if self.codes is None:
|
|
self.codes = embed_ind.flatten()
|
|
else:
|
|
self.codes = torch.cat([self.codes, embed_ind.flatten()])
|
|
if len(self.codes) > self.max_codes:
|
|
self.codes = self.codes[-self.max_codes:]
|
|
self.codes_full = True
|
|
|
|
if self.training:
|
|
embed_onehot_sum = embed_onehot.sum(0)
|
|
embed_sum = flatten.transpose(0, 1) @ embed_onehot
|
|
|
|
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
|
distributed.all_reduce(embed_onehot_sum)
|
|
distributed.all_reduce(embed_sum)
|
|
|
|
self.cluster_size.data.mul_(self.decay).add_(
|
|
embed_onehot_sum, alpha=1 - self.decay
|
|
)
|
|
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
|
|
n = self.cluster_size.sum()
|
|
cluster_size = (
|
|
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
|
|
)
|
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
|
|
self.embed.data.copy_(embed_normalized)
|
|
|
|
diff = (quantize.detach() - input).pow(2).mean()
|
|
quantize = input + (quantize - input).detach()
|
|
|
|
if return_soft_codes:
|
|
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,))
|
|
elif self.new_return_order:
|
|
return quantize, embed_ind, diff
|
|
else:
|
|
return quantize, diff, embed_ind
|
|
|
|
def embed_code(self, embed_id):
|
|
return F.embedding(embed_id, self.embed.transpose(0, 1))
|
|
|
|
|
|
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
|
|
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
|
# values with the specified expected variance.
|
|
class DiscretizationLoss(nn.Module):
|
|
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
|
super().__init__()
|
|
self.discrete_bins = discrete_bins
|
|
self.dim = dim
|
|
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
|
if store_past > 0:
|
|
self.record_past = True
|
|
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
|
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
|
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
|
else:
|
|
self.record_past = False
|
|
|
|
def forward(self, x):
|
|
other_dims = set(range(len(x.shape)))-set([self.dim])
|
|
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
|
averaged = averaged - averaged.mean()
|
|
|
|
if self.record_past:
|
|
acc_count = self.accumulator.shape[0]
|
|
avg = averaged.detach().clone()
|
|
if self.accumulator_filled > 0:
|
|
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
|
|
averaged / acc_count
|
|
|
|
# Also push averaged into the accumulator.
|
|
self.accumulator[self.accumulator_index] = avg
|
|
self.accumulator_index += 1
|
|
if self.accumulator_index >= acc_count:
|
|
self.accumulator_index *= 0
|
|
if self.accumulator_filled <= 0:
|
|
self.accumulator_filled += 1
|
|
|
|
return torch.sum(-self.dist.log_prob(averaged))
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, chan, conv, activation):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
conv(chan, chan, 3, padding = 1),
|
|
activation(),
|
|
conv(chan, chan, 3, padding = 1),
|
|
activation(),
|
|
conv(chan, chan, 1)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x) + x
|
|
|
|
|
|
class UpsampledConv(nn.Module):
|
|
def __init__(self, conv, *args, **kwargs):
|
|
super().__init__()
|
|
assert 'stride' in kwargs.keys()
|
|
self.stride = kwargs['stride']
|
|
del kwargs['stride']
|
|
self.conv = conv(*args, **kwargs)
|
|
|
|
def forward(self, x):
|
|
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest')
|
|
return self.conv(up)
|
|
|
|
|
|
# DiscreteVAE partially derived from lucidrains DALLE implementation
|
|
# Credit: https://github.com/lucidrains/DALLE-pytorch
|
|
class DiscreteVAE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
positional_dims=2,
|
|
num_tokens = 512,
|
|
codebook_dim = 512,
|
|
num_layers = 3,
|
|
num_resnet_blocks = 0,
|
|
hidden_dim = 64,
|
|
channels = 3,
|
|
stride = 2,
|
|
kernel_size = 4,
|
|
use_transposed_convs = True,
|
|
encoder_norm = False,
|
|
activation = 'relu',
|
|
smooth_l1_loss = False,
|
|
straight_through = False,
|
|
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
|
record_codes = False,
|
|
discretization_loss_averaging_steps = 100,
|
|
lr_quantizer_args = {},
|
|
):
|
|
super().__init__()
|
|
has_resblocks = num_resnet_blocks > 0
|
|
|
|
self.num_tokens = num_tokens
|
|
self.num_layers = num_layers
|
|
self.straight_through = straight_through
|
|
self.positional_dims = positional_dims
|
|
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps)
|
|
|
|
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
|
if positional_dims == 2:
|
|
conv = nn.Conv2d
|
|
conv_transpose = nn.ConvTranspose2d
|
|
else:
|
|
conv = nn.Conv1d
|
|
conv_transpose = nn.ConvTranspose1d
|
|
if not use_transposed_convs:
|
|
conv_transpose = functools.partial(UpsampledConv, conv)
|
|
|
|
if activation == 'relu':
|
|
act = nn.ReLU
|
|
elif activation == 'silu':
|
|
act = nn.SiLU
|
|
else:
|
|
assert NotImplementedError()
|
|
|
|
|
|
enc_layers = []
|
|
dec_layers = []
|
|
|
|
if num_layers > 0:
|
|
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
|
|
dec_chans = list(reversed(enc_chans))
|
|
|
|
enc_chans = [channels, *enc_chans]
|
|
|
|
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
|
|
dec_chans = [dec_init_chan, *dec_chans]
|
|
|
|
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
|
|
|
|
pad = (kernel_size - 1) // 2
|
|
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
|
|
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad), act()))
|
|
if encoder_norm:
|
|
enc_layers.append(nn.GroupNorm(8, enc_out))
|
|
dec_layers.append(nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad), act()))
|
|
dec_out_chans = dec_chans[-1]
|
|
innermost_dim = dec_chans[0]
|
|
else:
|
|
enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act()))
|
|
dec_out_chans = hidden_dim
|
|
innermost_dim = hidden_dim
|
|
|
|
for _ in range(num_resnet_blocks):
|
|
dec_layers.insert(0, ResBlock(innermost_dim, conv, act))
|
|
enc_layers.append(ResBlock(innermost_dim, conv, act))
|
|
|
|
if num_resnet_blocks > 0:
|
|
dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1))
|
|
|
|
|
|
enc_layers.append(conv(innermost_dim, codebook_dim, 1))
|
|
dec_layers.append(conv(dec_out_chans, channels, 1))
|
|
|
|
self.encoder = nn.Sequential(*enc_layers)
|
|
self.decoder = nn.Sequential(*dec_layers)
|
|
|
|
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
|
|
self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True)
|
|
|
|
# take care of normalization within class
|
|
self.normalization = normalization
|
|
self.record_codes = record_codes
|
|
if record_codes:
|
|
self.codes = torch.zeros((1228800,), dtype=torch.long)
|
|
self.code_ind = 0
|
|
self.total_codes = 0
|
|
self.internal_step = 0
|
|
|
|
def norm(self, images):
|
|
if not self.normalization is not None:
|
|
return images
|
|
|
|
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
|
|
arrange = 'c -> () c () ()' if self.positional_dims == 2 else 'c -> () c ()'
|
|
means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
|
|
images = images.clone()
|
|
images.sub_(means).div_(stds)
|
|
return images
|
|
|
|
def get_debug_values(self, step, __):
|
|
if self.record_codes and self.total_codes > 0:
|
|
# Report annealing schedule
|
|
return {'histogram_codes': self.codes[:self.total_codes]}
|
|
else:
|
|
return {}
|
|
|
|
@torch.no_grad()
|
|
@eval_decorator
|
|
def get_codebook_indices(self, images):
|
|
img = self.norm(images)
|
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
|
sampled, codes, _ = self.codebook(logits)
|
|
self.log_codes(codes)
|
|
return codes
|
|
|
|
def decode(
|
|
self,
|
|
img_seq
|
|
):
|
|
self.log_codes(img_seq)
|
|
if hasattr(self.codebook, 'embed_code'):
|
|
image_embeds = self.codebook.embed_code(img_seq)
|
|
else:
|
|
image_embeds = F.embedding(img_seq, self.codebook.codebook)
|
|
b, n, d = image_embeds.shape
|
|
|
|
kwargs = {}
|
|
if self.positional_dims == 1:
|
|
arrange = 'b n d -> b d n'
|
|
else:
|
|
h = w = int(sqrt(n))
|
|
arrange = 'b (h w) d -> b d h w'
|
|
kwargs = {'h': h, 'w': w}
|
|
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
|
images = [image_embeds]
|
|
for layer in self.decoder:
|
|
images.append(layer(images[-1]))
|
|
return images[-1], images[-2]
|
|
|
|
def infer(self, img):
|
|
img = self.norm(img)
|
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
|
sampled, codes, commitment_loss = self.codebook(logits)
|
|
return self.decode(codes)
|
|
|
|
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
|
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
|
# more lossy (but useful for determining network performance).
|
|
def forward(
|
|
self,
|
|
img
|
|
):
|
|
img = self.norm(img)
|
|
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
|
sampled, codes, commitment_loss = self.codebook(logits)
|
|
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
|
|
|
if self.training:
|
|
out = sampled
|
|
for d in self.decoder:
|
|
out = d(out)
|
|
self.log_codes(codes)
|
|
else:
|
|
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
|
out, _ = self.decode(codes)
|
|
|
|
# reconstruction loss
|
|
recon_loss = self.loss_fn(img, out, reduction='none')
|
|
|
|
return recon_loss, commitment_loss, out
|
|
|
|
def log_codes(self, codes):
|
|
# This is so we can debug the distribution of codes being learned.
|
|
if self.record_codes and self.internal_step % 10 == 0:
|
|
codes = codes.flatten()
|
|
l = codes.shape[0]
|
|
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
|
self.codes[i:i+l] = codes.cpu()
|
|
self.code_ind = self.code_ind + l
|
|
if self.code_ind >= self.codes.shape[0]:
|
|
self.code_ind = 0
|
|
self.total_codes += 1
|
|
self.internal_step += 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
v = DiscreteVAE(channels=80, normalization=None, positional_dims=1, num_tokens=8192, codebook_dim=2048,
|
|
hidden_dim=512, num_resnet_blocks=3, kernel_size=3, num_layers=1, use_transposed_convs=False)
|
|
r,l,o=v(torch.randn(1,80,256))
|
|
v.decode(torch.randint(0,8192,(1,256)))
|
|
print(o.shape, l.shape)
|