forked from mrq/tortoise-tts
voicefixed files do not overwrite, as my autism wants to hear the difference between them, incrementing file format fixed for real
This commit is contained in:
parent
ea1bc770aa
commit
3e8365fdec
48
webui.py
48
webui.py
|
@ -151,13 +151,31 @@ def generate(
|
|||
|
||||
volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None
|
||||
|
||||
idx = 1
|
||||
idx = 0
|
||||
idx_cache = {}
|
||||
for i, file in enumerate(os.listdir(outdir)):
|
||||
if file[-5:] == ".json":
|
||||
idx = idx + 1
|
||||
filename = os.path.basename(file)
|
||||
if filename[-5:] == ".json":
|
||||
match = re.findall(rf"^{voice}_(\d+)(?:.+?)\.json$", filename)
|
||||
elif filename[-4:] == ".wav":
|
||||
match = re.findall(rf"^{voice}_(\d+)(?:.+?)\.wav$", filename)
|
||||
else:
|
||||
continue
|
||||
if match is None or len(match) == 0:
|
||||
idx = idx + 1 # safety
|
||||
continue
|
||||
match = match[0]
|
||||
key = match[0]
|
||||
idx_cache[key] = True
|
||||
|
||||
idx = idx + len(idx_cache)
|
||||
|
||||
# I know there's something to pad I don't care
|
||||
pad = ""
|
||||
if idx < 10000:
|
||||
pad = f"{pad}0"
|
||||
if idx < 1000:
|
||||
pad = f"{pad}0"
|
||||
if idx < 100:
|
||||
pad = f"{pad}0"
|
||||
if idx < 10:
|
||||
|
@ -272,26 +290,28 @@ def generate(
|
|||
f.write(json.dumps(info, indent='\t') )
|
||||
|
||||
if args.voice_fixer and voicefixer:
|
||||
# we could do this on the pieces before they get stiched up anyways to save some compute
|
||||
# but the stitching would need to read back from disk, defeating the point of caching the waveform
|
||||
fixed_output_voices = []
|
||||
for path in progress.tqdm(output_voices, desc="Running voicefix..."):
|
||||
fixed = path.replace(".wav", "_fixed.wav")
|
||||
voicefixer.restore(
|
||||
input=path,
|
||||
output=path,
|
||||
output=fixed,
|
||||
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
|
||||
#mode=mode,
|
||||
)
|
||||
fixed_output_voices.append(fixed)
|
||||
output_voices = fixed_output_voices
|
||||
|
||||
if voice is not None and conditioning_latents is not None:
|
||||
with open(f'{get_voice_dir()}/{voice}/cond_latents.pth', 'rb') as f:
|
||||
info['latents'] = base64.b64encode(f.read()).decode("ascii")
|
||||
|
||||
if args.embed_output_metadata:
|
||||
for path in progress.tqdm(audio_cache, desc="Embedding metadata..."):
|
||||
info['text'] = audio_cache[path]['text']
|
||||
info['time'] = audio_cache[path]['time']
|
||||
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
|
||||
info['text'] = audio_cache[name]['text']
|
||||
info['time'] = audio_cache[name]['time']
|
||||
|
||||
metadata = music_tag.load_file(f"{outdir}/{voice}_{path}.wav")
|
||||
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
|
||||
metadata['lyrics'] = json.dumps(info)
|
||||
metadata.save()
|
||||
|
||||
|
@ -354,7 +374,7 @@ def update_presets(value):
|
|||
else:
|
||||
return (gr.update(), gr.update())
|
||||
|
||||
def read_generate_settings(file, read_latents=True):
|
||||
def read_generate_settings(file, read_latents=True, read_json=True):
|
||||
j = None
|
||||
latents = None
|
||||
|
||||
|
@ -699,7 +719,7 @@ def setup_gradio():
|
|||
inputs=None,
|
||||
outputs=voice
|
||||
)
|
||||
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=16, value=1, step=1)
|
||||
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=32, value=1, step=1)
|
||||
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
|
||||
recompute_voice_latents.click(compute_latents,
|
||||
inputs=[
|
||||
|
@ -816,7 +836,7 @@ def setup_gradio():
|
|||
if file[-4:] != ".wav":
|
||||
continue
|
||||
|
||||
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False)
|
||||
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False, use_json=True)
|
||||
if metadata is None:
|
||||
continue
|
||||
|
||||
|
@ -911,12 +931,12 @@ def setup_gradio():
|
|||
gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean),
|
||||
gr.Checkbox(label="Voice Fixer", value=args.voice_fixer),
|
||||
gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda),
|
||||
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
|
||||
]
|
||||
gr.Button(value="Check for Updates").click(check_for_updates)
|
||||
gr.Button(value="Reload TTS").click(reload_tts)
|
||||
with gr.Column():
|
||||
exec_inputs = exec_inputs + [
|
||||
gr.Number(label="Voice Latents Max Chunk Size", precision=0, value=args.force_cpu_for_conditioning_latents),
|
||||
gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size),
|
||||
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
|
||||
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),
|
||||
|
|
Loading…
Reference in New Issue
Block a user