voicefixed files do not overwrite, as my autism wants to hear the difference between them, incrementing file format fixed for real

This commit is contained in:
mrq 2023-02-15 05:49:28 +00:00
parent ea1bc770aa
commit 3e8365fdec

View File

@ -151,13 +151,31 @@ def generate(
volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None
idx = 1
idx = 0
idx_cache = {}
for i, file in enumerate(os.listdir(outdir)):
if file[-5:] == ".json":
idx = idx + 1
filename = os.path.basename(file)
if filename[-5:] == ".json":
match = re.findall(rf"^{voice}_(\d+)(?:.+?)\.json$", filename)
elif filename[-4:] == ".wav":
match = re.findall(rf"^{voice}_(\d+)(?:.+?)\.wav$", filename)
else:
continue
if match is None or len(match) == 0:
idx = idx + 1 # safety
continue
match = match[0]
key = match[0]
idx_cache[key] = True
idx = idx + len(idx_cache)
# I know there's something to pad I don't care
pad = ""
if idx < 10000:
pad = f"{pad}0"
if idx < 1000:
pad = f"{pad}0"
if idx < 100:
pad = f"{pad}0"
if idx < 10:
@ -272,26 +290,28 @@ def generate(
f.write(json.dumps(info, indent='\t') )
if args.voice_fixer and voicefixer:
# we could do this on the pieces before they get stiched up anyways to save some compute
# but the stitching would need to read back from disk, defeating the point of caching the waveform
fixed_output_voices = []
for path in progress.tqdm(output_voices, desc="Running voicefix..."):
fixed = path.replace(".wav", "_fixed.wav")
voicefixer.restore(
input=path,
output=path,
output=fixed,
cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda,
#mode=mode,
)
fixed_output_voices.append(fixed)
output_voices = fixed_output_voices
if voice is not None and conditioning_latents is not None:
with open(f'{get_voice_dir()}/{voice}/cond_latents.pth', 'rb') as f:
info['latents'] = base64.b64encode(f.read()).decode("ascii")
if args.embed_output_metadata:
for path in progress.tqdm(audio_cache, desc="Embedding metadata..."):
info['text'] = audio_cache[path]['text']
info['time'] = audio_cache[path]['time']
for name in progress.tqdm(audio_cache, desc="Embedding metadata..."):
info['text'] = audio_cache[name]['text']
info['time'] = audio_cache[name]['time']
metadata = music_tag.load_file(f"{outdir}/{voice}_{path}.wav")
metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav")
metadata['lyrics'] = json.dumps(info)
metadata.save()
@ -354,7 +374,7 @@ def update_presets(value):
else:
return (gr.update(), gr.update())
def read_generate_settings(file, read_latents=True):
def read_generate_settings(file, read_latents=True, read_json=True):
j = None
latents = None
@ -699,7 +719,7 @@ def setup_gradio():
inputs=None,
outputs=voice
)
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=16, value=1, step=1)
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=32, value=1, step=1)
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
recompute_voice_latents.click(compute_latents,
inputs=[
@ -816,7 +836,7 @@ def setup_gradio():
if file[-4:] != ".wav":
continue
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False)
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False, use_json=True)
if metadata is None:
continue
@ -911,12 +931,12 @@ def setup_gradio():
gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean),
gr.Checkbox(label="Voice Fixer", value=args.voice_fixer),
gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda),
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
]
gr.Button(value="Check for Updates").click(check_for_updates)
gr.Button(value="Reload TTS").click(reload_tts)
with gr.Column():
exec_inputs = exec_inputs + [
gr.Number(label="Voice Latents Max Chunk Size", precision=0, value=args.force_cpu_for_conditioning_latents),
gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size),
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),