update do_tts

This commit is contained in:
James Betker 2022-04-18 10:22:36 -06:00
parent 4281b64517
commit 3f968bedb5
2 changed files with 30 additions and 32 deletions

28
api.py
View File

@ -157,10 +157,23 @@ class TextToSpeech:
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024, model_dim=1024,
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False, train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval() average_conditioning_embeddings=True).cpu().eval()
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth')) self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
'''
self.autoregressive = UnifiedVoice(max_mel_tokens=2048, max_text_tokens=1024, max_conditioning_inputs=1, layers=42,
model_dim=1152, heads=18, number_text_tokens=256, train_solo_embeddings=False,
average_conditioning_embeddings=True, types=2).cpu().eval()
self.autoregressive.load_state_dict(torch.load('X:\\dlas\\experiments\\train_gpt_tts_xl\\models\\15250_gpt_ema.pth'))
'''
self.autoregressive_for_diffusion = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
model_dim=1024,
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
train_solo_embeddings=False,
average_conditioning_embeddings=True).cpu().eval()
self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
text_seq_len=350, text_heads=8, text_seq_len=350, text_heads=8,
@ -202,7 +215,7 @@ class TextToSpeech:
def tts(self, text, voice_samples, k=1, def tts(self, text, voice_samples, k=1,
# autoregressive generation parameters follow # autoregressive generation parameters follow
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
# diffusion generation parameters follow # diffusion generation parameters follow
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
**hf_generate_kwargs): **hf_generate_kwargs):
@ -232,8 +245,9 @@ class TextToSpeech:
num_return_sequences=self.autoregressive_batch_size, num_return_sequences=self.autoregressive_batch_size,
length_penalty=length_penalty, length_penalty=length_penalty,
repetition_penalty=repetition_penalty, repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**hf_generate_kwargs) **hf_generate_kwargs)
padding_needed = self.autoregressive.max_mel_tokens - codes.shape[1] padding_needed = max_mel_tokens - codes.shape[1]
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
samples.append(codes) samples.append(codes)
self.autoregressive = self.autoregressive.cpu() self.autoregressive = self.autoregressive.cpu()
@ -253,11 +267,11 @@ class TextToSpeech:
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
# results, but will increase memory usage. # results, but will increase memory usage.
self.autoregressive = self.autoregressive.cuda() self.autoregressive_for_diffusion = self.autoregressive_for_diffusion.cuda()
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results, best_latents = self.autoregressive_for_diffusion(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device), torch.tensor([best_results.shape[-1]*self.autoregressive_for_diffusion.mel_length_compression], device=conds.device),
return_latent=True, clip_inputs=False) return_latent=True, clip_inputs=False)
self.autoregressive = self.autoregressive.cpu() self.autoregressive_for_diffusion = self.autoregressive_for_diffusion.cpu()
print("Performing vocoding..") print("Performing vocoding..")
wav_candidates = [] wav_candidates = []

View File

@ -1,35 +1,17 @@
import argparse import argparse
import os import os
import torch
import torch.nn.functional as F
import torchaudio import torchaudio
from api import TextToSpeech, load_conditioning from api import TextToSpeech
from utils.audio import load_audio from utils.audio import load_audio, get_voices
from utils.tokenizer import VoiceBpeTokenizer
if __name__ == '__main__': if __name__ == '__main__':
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
# has shown that the model does not generalize to new voices very well.
preselected_cond_voices = {
# Male voices
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],
'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],
'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],
'obama': ['voices/obama/1.wav', 'voices/obama/2.wav'],
# Female voices
'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],
'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],
'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],
'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],
}
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('--voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='obama,dotrice,harris,lescault,otto,atkins,grace,kennard,mol') parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128) 'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=256)
parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16) parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16) parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/') parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
@ -38,8 +20,10 @@ if __name__ == '__main__':
tts = TextToSpeech(autoregressive_batch_size=args.batch_size) tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
for voice in args.voice.split(','): voices = get_voices()
cond_paths = preselected_cond_voices[voice] selected_voices = args.voice.split(',')
for voice in selected_voices:
cond_paths = voices[voice]
conds = [] conds = []
for cond_path in cond_paths: for cond_path in cond_paths:
c = load_audio(cond_path, 22050) c = load_audio(cond_path, 22050)