forked from mrq/tortoise-tts
update
This commit is contained in:
parent
4aab81b074
commit
904561d250
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -20,6 +20,7 @@ parts/
|
|||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
results/*
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
|
|
43
api.py
43
api.py
|
@ -150,7 +150,7 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|||
|
||||
|
||||
class TextToSpeech:
|
||||
def __init__(self, autoregressive_batch_size=32):
|
||||
def __init__(self, autoregressive_batch_size=16):
|
||||
self.autoregressive_batch_size = autoregressive_batch_size
|
||||
self.tokenizer = VoiceBpeTokenizer()
|
||||
download_models()
|
||||
|
@ -160,14 +160,7 @@ class TextToSpeech:
|
|||
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False,
|
||||
average_conditioning_embeddings=True).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
||||
|
||||
self.autoregressive_for_latents = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||
model_dim=1024,
|
||||
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False,
|
||||
average_conditioning_embeddings=True).cpu().eval()
|
||||
self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
||||
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
||||
|
||||
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||
text_seq_len=350, text_heads=8,
|
||||
|
@ -178,32 +171,38 @@ class TextToSpeech:
|
|||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder_audiobooks.pth'))
|
||||
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))
|
||||
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||
self.vocoder.eval(inference=True)
|
||||
|
||||
def tts_with_preset(self, text, voice_samples, preset='intelligible', **kwargs):
|
||||
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
||||
"""
|
||||
Calls TTS with one of a set of preset generation parameters. Options:
|
||||
'intelligible': Maximizes the probability of understandable words at the cost of diverse voices, intonation and prosody.
|
||||
'realistic': Increases the diversity of spoken voices and improves realism of vocal characteristics at the cost of intelligibility.
|
||||
'mid': Somewhere between 'intelligible' and 'realistic'.
|
||||
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
||||
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
||||
'standard': Very good quality. This is generally about as good as you are going to get.
|
||||
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
||||
"""
|
||||
# Use generally found best tuning knobs for generation.
|
||||
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .8,
|
||||
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
||||
# Presets are defined here.
|
||||
presets = {
|
||||
'intelligible': {'temperature': .5, 'length_penalty': 2.0, 'repetition_penalty': 2.0, 'top_p': .5, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': .7, 'diffusion_temperature': .7},
|
||||
'mid': {'temperature': .7, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .7, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 1.5, 'diffusion_temperature': .8},
|
||||
'realistic': {'temperature': 1.0, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .9, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 2, 'diffusion_temperature': 1},
|
||||
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
|
||||
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
||||
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
||||
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 2048},
|
||||
}
|
||||
kwargs.update(presets[preset])
|
||||
return self.tts(text, voice_samples, **kwargs)
|
||||
|
||||
def tts(self, text, voice_samples, k=1,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.5, length_penalty=1, repetition_penalty=2.0, top_p=.5,
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8,
|
||||
# diffusion generation parameters follow
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,):
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,):
|
||||
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||
|
||||
|
@ -250,11 +249,11 @@ class TextToSpeech:
|
|||
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
||||
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
||||
# results, but will increase memory usage.
|
||||
self.autoregressive_for_latents = self.autoregressive_for_latents.cuda()
|
||||
best_latents = self.autoregressive_for_latents(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
||||
self.autoregressive = self.autoregressive.cuda()
|
||||
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
||||
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
self.autoregressive_for_latents = self.autoregressive_for_latents.cpu()
|
||||
self.autoregressive = self.autoregressive.cpu()
|
||||
|
||||
print("Performing vocoding..")
|
||||
wav_candidates = []
|
||||
|
|
12
do_tts.py
12
do_tts.py
|
@ -27,12 +27,12 @@ if __name__ == '__main__':
|
|||
}
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='obama,dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
||||
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||
parser.add_argument('--text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||
parser.add_argument('--voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='obama,dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||
parser.add_argument('--num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
||||
parser.add_argument('--batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||
parser.add_argument('--num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/')
|
||||
args = parser.parse_args()
|
||||
os.makedirs(args.output_path, exist_ok=True)
|
||||
|
||||
|
|
48
read.py
48
read.py
|
@ -6,7 +6,7 @@ import torch.nn.functional as F
|
|||
import torchaudio
|
||||
|
||||
from api import TextToSpeech, load_conditioning
|
||||
from utils.audio import load_audio
|
||||
from utils.audio import load_audio, get_voices
|
||||
from utils.tokenizer import VoiceBpeTokenizer
|
||||
|
||||
def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
||||
|
@ -27,39 +27,47 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
|
|||
return texts
|
||||
|
||||
if __name__ == '__main__':
|
||||
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
||||
# has shown that the model does not generalize to new voices very well.
|
||||
preselected_cond_voices = {
|
||||
'emma_stone': ['voices/emma_stone/1.wav','voices/emma_stone/2.wav','voices/emma_stone/3.wav'],
|
||||
'tom_hanks': ['voices/tom_hanks/1.wav','voices/tom_hanks/2.wav','voices/tom_hanks/3.wav'],
|
||||
'patrick_stewart': ['voices/patrick_stewart/1.wav','voices/patrick_stewart/2.wav','voices/patrick_stewart/3.wav','voices/patrick_stewart/4.wav'],
|
||||
}
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='patrick_stewart')
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
||||
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='realistic')
|
||||
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
||||
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
|
||||
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
|
||||
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
parser.add_argument('--generation_preset', type=str, help='Preset to use for generation', default='standard')
|
||||
args = parser.parse_args()
|
||||
os.makedirs(args.output_path, exist_ok=True)
|
||||
|
||||
outpath = args.output_path
|
||||
voices = get_voices()
|
||||
selected_voices = args.voice.split(',')
|
||||
for selected_voice in selected_voices:
|
||||
voice_outpath = os.path.join(outpath, selected_voice)
|
||||
os.makedirs(voice_outpath, exist_ok=True)
|
||||
|
||||
with open(args.textfile, 'r', encoding='utf-8') as f:
|
||||
text = ''.join([l for l in f.readlines()])
|
||||
texts = split_and_recombine_text(text)
|
||||
tts = TextToSpeech()
|
||||
|
||||
tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
|
||||
if '&' in selected_voice:
|
||||
voice_sel = selected_voice.split('&')
|
||||
else:
|
||||
voice_sel = [selected_voice]
|
||||
cond_paths = []
|
||||
for vsel in voice_sel:
|
||||
if vsel not in voices.keys():
|
||||
print(f'Error: voice {vsel} not available. Skipping.')
|
||||
continue
|
||||
cond_paths.extend(voices[vsel])
|
||||
if not cond_paths:
|
||||
print('Error: no valid voices specified. Try again.')
|
||||
|
||||
priors = []
|
||||
for j, text in enumerate(texts):
|
||||
cond_paths = preselected_cond_voices[args.voice]
|
||||
conds = priors.copy()
|
||||
for cond_path in cond_paths:
|
||||
c = load_audio(cond_path, 22050)
|
||||
conds.append(c)
|
||||
gen = tts.tts_with_preset(text, conds, preset=args.generation_preset, num_autoregressive_samples=args.num_samples)
|
||||
torchaudio.save(os.path.join(args.output_path, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
||||
gen = tts.tts_with_preset(text, conds, preset=args.generation_preset)
|
||||
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen.squeeze(0).cpu(), 24000)
|
||||
|
||||
priors.append(torchaudio.functional.resample(gen, 24000, 22050).squeeze(0))
|
||||
while len(priors) > 2:
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
import os
|
||||
from glob import glob
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
|
@ -78,6 +81,16 @@ def dynamic_range_decompression(x, C=1):
|
|||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def get_voices():
|
||||
subs = os.listdir('voices')
|
||||
voices = {}
|
||||
for sub in subs:
|
||||
subj = os.path.join('voices', sub)
|
||||
if os.path.isdir(subj):
|
||||
voices[sub] = glob(f'{subj}/*.wav')
|
||||
return voices
|
||||
|
||||
|
||||
class TacotronSTFT(torch.nn.Module):
|
||||
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
||||
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|
||||
|
|
Loading…
Reference in New Issue
Block a user