Add in ASR filtration

This commit is contained in:
James Betker 2022-03-26 21:32:12 -06:00
parent 79c74c1484
commit adccaa44bc
5 changed files with 70 additions and 66 deletions

View File

@ -7,6 +7,7 @@ import torch
import torch.nn.functional as F import torch.nn.functional as F
import torchaudio import torchaudio
import progressbar import progressbar
import ocotillo
from models.diffusion_decoder import DiffusionTts from models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice from models.autoregressive import UnifiedVoice
@ -17,7 +18,7 @@ from models.text_voice_clip import VoiceCLIP
from models.vocoder import UnivNetGenerator from models.vocoder import UnivNetGenerator
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from utils.tokenizer import VoiceBpeTokenizer from utils.tokenizer import VoiceBpeTokenizer, lev_distance
pbar = None pbar = None
def download_models(): def download_models():
@ -47,13 +48,13 @@ def download_models():
print('Done.') print('Done.')
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200): def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True):
""" """
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
""" """
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
conditioning_free=True, conditioning_free_k=1) conditioning_free=cond_free, conditioning_free_k=1)
def load_conditioning(path, sample_rate=22050, cond_length=132300): def load_conditioning(path, sample_rate=22050, cond_length=132300):
@ -109,11 +110,12 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
mel = torch.nn.functional.pad(mel_codes, (0, gap)) mel = torch.nn.functional.pad(mel_codes, (0, gap))
output_shape = (mel.shape[0], 100, mel.shape[-1]*4) output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
if mean: if mean:
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device), mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
model_kwargs={'aligned_conditioning': mel_codes, 'conditioning_input': cond_mel}) model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
else: else:
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'aligned_conditioning': mel_codes, 'conditioning_input': cond_mel}) mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
return denormalize_tacotron_mel(mel)[:,:,:msl*4] return denormalize_tacotron_mel(mel)[:,:,:msl*4]
@ -136,9 +138,9 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol') parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512) parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=1024)
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16) parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=32)
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2) parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/') parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
args = parser.parse_args() args = parser.parse_args()
@ -192,7 +194,7 @@ if __name__ == '__main__':
return_loss=False)) return_loss=False))
clip_results = torch.cat(clip_results, dim=0) clip_results = torch.cat(clip_results, dim=0)
samples = torch.cat(samples, dim=0) samples = torch.cat(samples, dim=0)
best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices] best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices]
# Delete the autoregressive and clip models to free up GPU memory # Delete the autoregressive and clip models to free up GPU memory
del samples, clip del samples, clip
@ -210,12 +212,32 @@ if __name__ == '__main__':
vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g']) vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
vocoder = vocoder.cuda() vocoder = vocoder.cuda()
vocoder.eval(inference=True) vocoder.eval(inference=True)
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100) initial_diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=40, cond_free=False)
final_diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=500)
print("Performing vocoding..") print("Performing vocoding..")
# Perform vocoding on each batch element separately: The diffusion model is very memory (and compute!) intensive. wav_candidates = []
for b in range(best_results.shape[0]): for b in range(best_results.shape[0]):
code = best_results[b].unsqueeze(0) code = best_results[b].unsqueeze(0)
mel = do_spectrogram_diffusion(diffusion, diffuser, code, cond_diffusion, mean=False) mel = do_spectrogram_diffusion(diffusion, initial_diffuser, code, cond_diffusion, mean=False)
wav = vocoder.inference(mel) wav = vocoder.inference(mel)
torchaudio.save(os.path.join(args.output_path, f'{voice}_{b}.wav'), wav.squeeze(0).cpu(), 24000) wav_candidates.append(wav.cpu())
# Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
transcriber = ocotillo.Transcriber(on_cuda=True)
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
best = 99999999
for i, transcription in enumerate(transcriptions):
dist = lev_distance(transcription, args.text.lower())
if dist < best:
best = dist
best_codes = best_results[i].unsqueeze(0)
best_wav = wav_candidates[i]
del transcriber
torchaudio.save(os.path.join(args.output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
# Perform diffusion again with the high-quality diffuser.
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
wav = vocoder.inference(mel)
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)

View File

@ -486,43 +486,12 @@ class DiffusionTts(nn.Module):
aligned_conditioning = F.pad(aligned_conditioning, (0, int(pc*aligned_conditioning.shape[-1]))) aligned_conditioning = F.pad(aligned_conditioning, (0, int(pc*aligned_conditioning.shape[-1])))
return x, aligned_conditioning return x, aligned_conditioning
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, lr_input=None, conditioning_free=False): def timestep_independent(self, aligned_conditioning, conditioning_input):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
assert conditioning_input is not None
if self.super_sampling_enabled:
assert lr_input is not None
if self.training and self.super_sampling_max_noising_factor > 0:
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
x = torch.cat([x, lr_input], dim=1)
# Shuffle aligned_latent to BxCxS format # Shuffle aligned_latent to BxCxS format
if is_latent(aligned_conditioning): if is_latent(aligned_conditioning):
aligned_conditioning = aligned_conditioning.permute(0, 2, 1) aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
# Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net. with autocast(aligned_conditioning.device.type, enabled=self.enable_fp16):
orig_x_shape = x.shape[-1]
x, aligned_conditioning = self.fix_alignment(x, aligned_conditioning)
with autocast(x.device.type, enabled=self.enable_fp16):
hs = []
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
# Note: this block does not need to repeated on inference, since it is not timestep-dependent.
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
else:
cond_emb = self.contextual_embedder(conditioning_input) cond_emb = self.contextual_embedder(conditioning_input)
if len(cond_emb.shape) == 3: # Just take the first element. if len(cond_emb.shape) == 3: # Just take the first element.
cond_emb = cond_emb[:, :, 0] cond_emb = cond_emb[:, :, 0]
@ -532,20 +501,25 @@ class DiffusionTts(nn.Module):
code_emb = self.code_converter(aligned_conditioning) code_emb = self.code_converter(aligned_conditioning)
cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1]) cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1)) code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance. return code_emb
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
code_emb)
# Everything after this comment is timestep dependent. def forward(self, x, timesteps, precomputed_aligned_embeddings, conditioning_free=False):
assert x.shape[-1] % self.alignment_size == 0
with autocast(x.device.type, enabled=self.enable_fp16):
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
else:
code_emb = precomputed_aligned_embeddings
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1) code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1)
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb) code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
first = True first = True
time_emb = time_emb.float() time_emb = time_emb.float()
h = x h = x
hs = []
for k, module in enumerate(self.input_blocks): for k, module in enumerate(self.input_blocks):
if isinstance(module, nn.Conv1d): if isinstance(module, nn.Conv1d):
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest') h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
@ -565,14 +539,7 @@ class DiffusionTts(nn.Module):
h = h.float() h = h.float()
out = self.out(h) out = self.out(h)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. return out
extraneous_addition = 0
params = [self.aligned_latent_padding_embedding, self.unconditioned_embedding] + list(self.latent_converter.parameters())
for p in params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out[:, :, :orig_x_shape]
if __name__ == '__main__': if __name__ == '__main__':

View File

@ -8,3 +8,4 @@ progressbar
einops einops
unidecode unidecode
x-transformers x-transformers
ocotillo

0
utils/__init__.py Normal file
View File

View File

@ -148,6 +148,20 @@ def english_cleaners(text):
text = text.replace('"', '') text = text.replace('"', '')
return text return text
def lev_distance(s1, s2):
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2 + 1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
class VoiceBpeTokenizer: class VoiceBpeTokenizer:
def __init__(self, vocab_file='data/tokenizer.json'): def __init__(self, vocab_file='data/tokenizer.json'):