forked from mrq/tortoise-tts
add option to specify model directory to API
This commit is contained in:
parent
354b4ea0ea
commit
d0caf7e695
27
api.py
27
api.py
|
@ -170,35 +170,40 @@ class TextToSpeech:
|
||||||
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
||||||
GPU OOM errors. Larger numbers generates slightly faster.
|
GPU OOM errors. Larger numbers generates slightly faster.
|
||||||
"""
|
"""
|
||||||
def __init__(self, autoregressive_batch_size=16):
|
def __init__(self, autoregressive_batch_size=16, models_dir='.models'):
|
||||||
self.autoregressive_batch_size = autoregressive_batch_size
|
self.autoregressive_batch_size = autoregressive_batch_size
|
||||||
self.tokenizer = VoiceBpeTokenizer()
|
self.tokenizer = VoiceBpeTokenizer()
|
||||||
download_models()
|
download_models()
|
||||||
|
|
||||||
|
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
||||||
|
# Assume this is a traced directory.
|
||||||
|
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
||||||
|
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
||||||
|
else:
|
||||||
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||||
model_dim=1024,
|
model_dim=1024,
|
||||||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||||
train_solo_embeddings=False,
|
train_solo_embeddings=False,
|
||||||
average_conditioning_embeddings=True).cpu().eval()
|
average_conditioning_embeddings=True).cpu().eval()
|
||||||
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
self.autoregressive.load_state_dict(torch.load(f'{models_dir}/autoregressive.pth'))
|
||||||
|
|
||||||
|
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||||
|
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||||
|
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||||
|
self.diffusion.load_state_dict(torch.load(f'{models_dir}/diffusion_decoder.pth'))
|
||||||
|
|
||||||
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||||
text_seq_len=350, text_heads=8,
|
text_seq_len=350, text_heads=8,
|
||||||
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||||
use_xformers=True).cpu().eval()
|
use_xformers=True).cpu().eval()
|
||||||
self.clvp.load_state_dict(torch.load('.models/clvp.pth'))
|
self.clvp.load_state_dict(torch.load(f'{models_dir}/clvp.pth'))
|
||||||
|
|
||||||
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
||||||
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
||||||
self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))
|
self.cvvp.load_state_dict(torch.load(f'{models_dir}/cvvp.pth'))
|
||||||
|
|
||||||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
|
||||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
|
||||||
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
|
||||||
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))
|
|
||||||
|
|
||||||
self.vocoder = UnivNetGenerator().cpu()
|
self.vocoder = UnivNetGenerator().cpu()
|
||||||
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
self.vocoder.load_state_dict(torch.load(f'{models_dir}/vocoder.pth')['model_g'])
|
||||||
self.vocoder.eval(inference=True)
|
self.vocoder.eval(inference=True)
|
||||||
|
|
||||||
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
|
||||||
|
@ -216,7 +221,7 @@ class TextToSpeech:
|
||||||
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
||||||
# Presets are defined here.
|
# Presets are defined here.
|
||||||
presets = {
|
presets = {
|
||||||
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
|
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 32, 'cond_free': False},
|
||||||
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
|
||||||
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
|
||||||
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024},
|
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024},
|
||||||
|
|
Loading…
Reference in New Issue
Block a user