forked from mrq/ai-voice-cloning
actually accumulate derivatives when estimating milestones and final loss by using half of the log
This commit is contained in:
parent
35225a35da
commit
b8a620e8d7
34
src/utils.py
34
src/utils.py
|
@ -805,20 +805,27 @@ class TrainingState():
|
|||
self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}')
|
||||
|
||||
if len(self.losses) >= 2:
|
||||
# i can probably do a """riemann sum""" to get a better derivative, but the instantaneous one works fine
|
||||
d1_loss = self.losses[-1]["value"]
|
||||
d2_loss = self.losses[-2]["value"]
|
||||
dloss = d2_loss - d1_loss
|
||||
# """riemann sum""" but not really as this is for derivatives and not integrals
|
||||
deriv = 0
|
||||
accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it
|
||||
for i in range(accum_length):
|
||||
d1_loss = self.losses[-i-1]["value"]
|
||||
d2_loss = self.losses[-i-2]["value"]
|
||||
dloss = (d2_loss - d1_loss)
|
||||
|
||||
d1_step = self.losses[-1]["step"]
|
||||
d2_step = self.losses[-2]["step"]
|
||||
dstep = d2_step - d1_step
|
||||
d1_step = self.losses[-i-1]["step"]
|
||||
d2_step = self.losses[-i-2]["step"]
|
||||
dstep = (d2_step - d1_step)
|
||||
|
||||
if dstep == 0:
|
||||
continue
|
||||
|
||||
# don't bother if the loss went up
|
||||
if True: # dloss < 0:
|
||||
its_remain = self.its - self.it
|
||||
inst_deriv = dloss / dstep
|
||||
deriv += inst_deriv
|
||||
|
||||
deriv = deriv / accum_length
|
||||
|
||||
if deriv != 0: # dloss < 0:
|
||||
next_milestone = None
|
||||
for milestone in self.loss_milestones:
|
||||
if d1_loss > milestone:
|
||||
|
@ -827,10 +834,13 @@ class TrainingState():
|
|||
|
||||
if next_milestone:
|
||||
# tfw can do simple calculus but not basic algebra in my head
|
||||
est_its = (next_milestone - d1_loss) * (dstep / dloss)
|
||||
est_its = (next_milestone - d1_loss) / deriv
|
||||
print("Estimated iteration to next milestone", est_its)
|
||||
if est_its >= 0:
|
||||
self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its')
|
||||
else:
|
||||
est_loss = inst_deriv * its_remain + d1_loss
|
||||
est_loss = inst_deriv * (self.its - self.it) + d1_loss
|
||||
if est_loss >= 0:
|
||||
self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}')
|
||||
|
||||
self.metrics['loss'] = ", ".join(self.metrics['loss'])
|
||||
|
|
Loading…
Reference in New Issue
Block a user