tortoise-tts/app.py

168 lines
5.7 KiB
Python
Raw Normal View History

2023-02-02 21:13:28 +00:00
import os
import argparse
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, progress=gr.Progress()):
if voice != "microphone":
2023-02-02 21:13:28 +00:00
voices = [voice]
else:
voices = []
if emotion == "Custom" and prompt.strip() != "":
2023-02-02 21:13:28 +00:00
text = f"[{prompt},] {text}"
elif emotion != "None":
text = f"[I am really {emotion.lower()},] {text}"
2023-02-02 21:13:28 +00:00
c = None
if voice == "microphone":
2023-02-02 21:13:28 +00:00
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
2023-02-02 21:13:28 +00:00
c = load_audio(mic_audio, 22050)
if len(voices) == 1 or len(voices) == 0:
if voice == "microphone":
2023-02-02 21:13:28 +00:00
voice_samples, conditioning_latents = [c], None
else:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
if voice == "microphone":
2023-02-02 21:13:28 +00:00
voice_samples.extend([c])
sample_voice = voice_samples[0] if len(voice_samples) else None
if seed == 0:
seed = None
2023-02-02 21:13:28 +00:00
start_time = time.time()
# >b-buh why not set samples and iterations to nullllll
# shut up
if preset == "none":
gen, additionals = tts.tts_with_preset(
2023-02-02 21:13:28 +00:00
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="standard",
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
progress=progress
2023-02-02 21:13:28 +00:00
)
seed = additionals[0]
2023-02-02 21:13:28 +00:00
else:
gen, additionals = tts.tts_with_preset(
2023-02-02 21:13:28 +00:00
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
temperature=temperature,
progress=progress
2023-02-02 21:13:28 +00:00
)
seed = additionals[0]
2023-02-02 21:13:28 +00:00
info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
with open("results.log", "a") as f:
f.write(info)
2023-02-02 21:13:28 +00:00
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(f"{text}\n\n{info}")
2023-02-02 21:13:28 +00:00
if isinstance(gen, list):
for j, g in enumerate(gen):
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen[0].squeeze().cpu().numpy()),
seed
2023-02-02 21:13:28 +00:00
)
else:
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen.squeeze().cpu().numpy()),
seed
2023-02-02 21:13:28 +00:00
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
args = parser.parse_args()
text = gr.Textbox(lines=4, label="Prompt")
2023-02-02 21:13:28 +00:00
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
2023-02-02 21:13:28 +00:00
type="value",
)
prompt = gr.Textbox(lines=1, label="Custom Emotion (if selected)")
2023-02-02 21:13:28 +00:00
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "none"],
value="none",
label="Preset",
2023-02-02 21:13:28 +00:00
type="value",
)
candidates = gr.Slider(value=1, minimum=1, maximum=6, label="Candidates")
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
2023-02-02 21:13:28 +00:00
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["random", "microphone", "disabled"],
label="Voice",
2023-02-02 21:13:28 +00:00
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
2023-02-02 21:13:28 +00:00
source="microphone",
type="filepath",
)
seed = gr.Number(value=0, precision=0, label="Seed")
2023-02-02 21:13:28 +00:00
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
2023-02-02 21:13:28 +00:00
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature
],
outputs=[selected_voice, output_audio, usedSeed],
allow_flagging=False
2023-02-02 21:13:28 +00:00
)
interface.queue().launch(share=args.share)
if __name__ == "__main__":
tts = TextToSpeech()
main()