Added choices to choose between diffusion samplers (p, ddim)

This commit is contained in:
mrq 2023-02-05 01:28:31 +00:00
parent 4274cce218
commit 078dc0c6e2
3 changed files with 37 additions and 16 deletions

32
app.py
View File

@ -9,7 +9,7 @@ from datetime import datetime
from tortoise.api import TextToSpeech from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices from tortoise.utils.audio import load_audio, load_voice, load_voices
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, progress=gr.Progress()): def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, progress=gr.Progress()):
if voice != "microphone": if voice != "microphone":
voices = [voice] voices = [voice]
else: else:
@ -42,11 +42,11 @@ def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates,
start_time = time.time() start_time = time.time()
presets = { presets = {
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False}, 'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80}, 'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, 'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, 'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
'none': {'num_autoregressive_samples': num_autoregressive_samples, 'diffusion_iterations': diffusion_iterations}, 'None': {'num_autoregressive_samples': num_autoregressive_samples, 'diffusion_iterations': diffusion_iterations},
} }
settings = { settings = {
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
@ -58,13 +58,14 @@ def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates,
'use_deterministic_seed': seed, 'use_deterministic_seed': seed,
'return_deterministic_state': True, 'return_deterministic_state': True,
'k': candidates, 'k': candidates,
'diffusion_sampler': diffusion_sampler,
'progress': progress, 'progress': progress,
} }
settings.update(presets[preset]) settings.update(presets[preset])
gen, additionals = tts.tts( text, **settings ) gen, additionals = tts.tts( text, **settings )
seed = additionals[0] seed = additionals[0]
info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n" info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Diffusion Sampler: {diffusion_sampler} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
with open("results.log", "a") as f: with open("results.log", "a") as f:
f.write(info) f.write(info)
@ -74,7 +75,7 @@ def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates,
os.makedirs(outdir, exist_ok=True) os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f: with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(f"{text}\n\n{info}") f.write(f"{info}")
if isinstance(gen, list): if isinstance(gen, list):
for j, g in enumerate(gen): for j, g in enumerate(gen):
@ -104,10 +105,10 @@ def main():
label="Emotion", label="Emotion",
type="value", type="value",
) )
prompt = gr.Textbox(lines=1, label="Custom Emotion (if selected)") prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
preset = gr.Radio( preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "none"], ["Ultra Fast", "Fast", "Standard", "High Quality", "None"],
value="none", value="None",
label="Preset", label="Preset",
type="value", type="value",
) )
@ -115,6 +116,12 @@ def main():
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples") num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations") diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature") temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
diffusion_sampler = gr.Radio(
["P", "DDIM"],
value="P",
label="Diffusion Samplers",
type="value",
)
voice = gr.Dropdown( voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["random", "microphone", "disabled"], os.listdir(os.path.join("tortoise", "voices")) + ["random", "microphone", "disabled"],
@ -145,7 +152,8 @@ def main():
candidates, candidates,
num_autoregressive_samples, num_autoregressive_samples,
diffusion_iterations, diffusion_iterations,
temperature temperature,
diffusion_sampler
], ],
outputs=[selected_voice, output_audio, usedSeed], outputs=[selected_voice, output_audio, usedSeed],
allow_flagging='never' allow_flagging='never'

View File

@ -153,7 +153,7 @@ def fix_autoregressive_output(codes, stop_token, complain=True):
return codes return codes
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True, progress=None, desc=None): def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True, progress=None, desc=None, sampler="P"):
""" """
Uses the specified diffusion model to convert discrete codes into a spectrogram. Uses the specified diffusion model to convert discrete codes into a spectrogram.
""" """
@ -163,9 +163,18 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_la
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False) precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)
noise = torch.randn(output_shape, device=latents.device) * temperature noise = torch.randn(output_shape, device=latents.device) * temperature
mel = None
print(f"Sampler: {sampler}")
if sampler == "P":
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
verbose=verbose, progress=progress, desc=desc) verbose=verbose, progress=progress, desc=desc)
elif sampler == "DDIM":
mel = diffuser.ddim_sample_loop(diffusion_model, output_shape, noise=noise,
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
verbose=verbose, progress=progress, desc=desc)
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
@ -361,6 +370,7 @@ class TextToSpeech:
cvvp_amount=.0, cvvp_amount=.0,
# diffusion generation parameters follow # diffusion generation parameters follow
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
diffusion_sampler="P",
progress=None, progress=None,
**hf_generate_kwargs): **hf_generate_kwargs):
""" """
@ -531,7 +541,7 @@ class TextToSpeech:
break break
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning, mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning,
temperature=diffusion_temperature, verbose=verbose, progress=progress, desc="Transforming autoregressive outputs into audio..") temperature=diffusion_temperature, verbose=verbose, progress=progress, desc="Transforming autoregressive outputs into audio..", sampler=diffusion_sampler)
wav = self.vocoder.inference(mel) wav = self.vocoder.inference(mel)
wav_candidates.append(wav.cpu()) wav_candidates.append(wav.cpu())

View File

@ -734,6 +734,7 @@ class GaussianDiffusion:
verbose=False, verbose=False,
eta=0.0, eta=0.0,
progress=None, progress=None,
desc=None,
): ):
""" """
Generate samples from the model using DDIM. Generate samples from the model using DDIM.
@ -753,6 +754,7 @@ class GaussianDiffusion:
verbose=verbose, verbose=verbose,
eta=eta, eta=eta,
progress=progress, progress=progress,
desc=desc
): ):
final = sample final = sample
return final["sample"] return final["sample"]
@ -770,6 +772,7 @@ class GaussianDiffusion:
verbose=False, verbose=False,
eta=0.0, eta=0.0,
progress=None, progress=None,
desc=None,
): ):
""" """
Use DDIM to sample from the model and yield intermediate samples from Use DDIM to sample from the model and yield intermediate samples from
@ -790,7 +793,7 @@ class GaussianDiffusion:
# Lazy import so that we don't depend on tqdm. # Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm from tqdm.auto import tqdm
indices = tqdm_override(indices, verbose=verbose, desc="DDIM Sample Loop Progressive", progress=progress) indices = tqdm_override(indices, verbose=verbose, desc=desc, progress=progress)
for i in indices: for i in indices:
t = th.tensor([i] * shape[0], device=device) t = th.tensor([i] * shape[0], device=device)