forked from mrq/ai-voice-cloning
split slicing dataset routine so it can be done after the fact
This commit is contained in:
parent
e3fdb79b49
commit
94551fb9ac
80
src/utils.py
80
src/utils.py
|
@ -1051,7 +1051,56 @@ def whisper_transcribe( file, language=None ):
|
||||||
result['segments'].append(reparsed)
|
result['segments'].append(reparsed)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_audio=False, progress=None ):
|
def validate_waveform( waveform, sample_rate ):
|
||||||
|
if not torch.any(waveform < 0):
|
||||||
|
return False
|
||||||
|
|
||||||
|
if waveform.shape[-1] < (.6 * sample_rate):
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def slice_dataset( voice, start_offset=0, end_offset=0 ):
|
||||||
|
indir = f'./training/{voice}/'
|
||||||
|
infile = f'{indir}/whisper.json'
|
||||||
|
|
||||||
|
if not os.path.exists(infile):
|
||||||
|
raise Exception(f"Missing dataset: {infile}")
|
||||||
|
|
||||||
|
with open(infile, 'r', encoding="utf-8") as f:
|
||||||
|
results = json.load(f)
|
||||||
|
|
||||||
|
transcription = []
|
||||||
|
for filename in results:
|
||||||
|
idx = 0
|
||||||
|
result = results[filename]
|
||||||
|
waveform, sampling_rate = torchaudio.load(f'./voices/{voice}/{filename}')
|
||||||
|
|
||||||
|
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
|
||||||
|
start = int((segment['start'] + start_offset) * sampling_rate)
|
||||||
|
end = int((segment['end'] + end_offset) * sampling_rate)
|
||||||
|
|
||||||
|
sliced_waveform = waveform[:, start:end]
|
||||||
|
sliced_name = filename.replace(".wav", f"_{pad(idx, 4)}.wav")
|
||||||
|
|
||||||
|
if not validate_waveform( sliced_waveform, sampling_rate ):
|
||||||
|
print(f"Invalid waveform segment ({segment['start']}:{segment['end']}): {sliced_name}, skipping...")
|
||||||
|
continue
|
||||||
|
|
||||||
|
torchaudio.save(f"{indir}/audio/{sliced_name}", sliced_waveform, sampling_rate)
|
||||||
|
|
||||||
|
idx = idx + 1
|
||||||
|
line = f"audio/{sliced_name}|{segment['text'].strip()}"
|
||||||
|
transcription.append(line)
|
||||||
|
with open(f'{indir}/train.txt', 'a', encoding="utf-8") as f:
|
||||||
|
f.write(f'\n{line}')
|
||||||
|
|
||||||
|
joined = "\n".join(transcription)
|
||||||
|
with open(f'{indir}/train.txt', 'w', encoding="utf-8") as f:
|
||||||
|
f.write(joined)
|
||||||
|
|
||||||
|
return f"Processed dataset to: {indir}\n{joined}"
|
||||||
|
|
||||||
|
def prepare_dataset( files, outdir, language=None, skip_existings=False, progress=None ):
|
||||||
unload_tts()
|
unload_tts()
|
||||||
|
|
||||||
global whisper_model
|
global whisper_model
|
||||||
|
@ -1079,13 +1128,6 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_a
|
||||||
if match[0] not in previous_list:
|
if match[0] not in previous_list:
|
||||||
previous_list.append(f'{match[0].split("/")[-1]}.wav')
|
previous_list.append(f'{match[0].split("/")[-1]}.wav')
|
||||||
|
|
||||||
def validate_waveform( waveform, sample_rate ):
|
|
||||||
if not torch.any(waveform < 0):
|
|
||||||
return False
|
|
||||||
|
|
||||||
if waveform.shape[-1] < (.6 * sampling_rate):
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
|
for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
|
||||||
basename = os.path.basename(file)
|
basename = os.path.basename(file)
|
||||||
|
@ -1099,9 +1141,7 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_a
|
||||||
print(f"Transcribed file: {file}, {len(result['segments'])} found.")
|
print(f"Transcribed file: {file}, {len(result['segments'])} found.")
|
||||||
|
|
||||||
waveform, sampling_rate = torchaudio.load(file)
|
waveform, sampling_rate = torchaudio.load(file)
|
||||||
num_channels, num_frames = waveform.shape
|
|
||||||
|
|
||||||
if not slice_audio:
|
|
||||||
if not validate_waveform( waveform, sampling_rate ):
|
if not validate_waveform( waveform, sampling_rate ):
|
||||||
print(f"Invalid waveform: {basename}, skipping...")
|
print(f"Invalid waveform: {basename}, skipping...")
|
||||||
continue
|
continue
|
||||||
|
@ -1111,26 +1151,6 @@ def prepare_dataset( files, outdir, language=None, skip_existings=False, slice_a
|
||||||
transcription.append(line)
|
transcription.append(line)
|
||||||
with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f:
|
with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f:
|
||||||
f.write(f'\n{line}')
|
f.write(f'\n{line}')
|
||||||
else:
|
|
||||||
idx = 0
|
|
||||||
for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress):
|
|
||||||
start = int(segment['start'] * sampling_rate)
|
|
||||||
end = int(segment['end'] * sampling_rate)
|
|
||||||
|
|
||||||
sliced_waveform = waveform[:, start:end]
|
|
||||||
sliced_name = basename.replace(".wav", f"_{pad(idx, 4)}.wav")
|
|
||||||
|
|
||||||
if not validate_waveform( sliced_waveform, sampling_rate ):
|
|
||||||
print(f"Invalid waveform segment ({segment['start']}:{segment['end']}): {sliced_name}, skipping...")
|
|
||||||
continue
|
|
||||||
|
|
||||||
torchaudio.save(f"{outdir}/audio/{sliced_name}", sliced_waveform, sampling_rate)
|
|
||||||
|
|
||||||
idx = idx + 1
|
|
||||||
line = f"audio/{sliced_name}|{segment['text'].strip()}"
|
|
||||||
transcription.append(line)
|
|
||||||
with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f:
|
|
||||||
f.write(f'\n{line}')
|
|
||||||
|
|
||||||
do_gc()
|
do_gc()
|
||||||
|
|
||||||
|
|
15
src/webui.py
15
src/webui.py
|
@ -184,7 +184,10 @@ def read_generate_settings_proxy(file, saveAs='.temp'):
|
||||||
|
|
||||||
def prepare_dataset_proxy( voice, language, validation_text_length, validation_audio_length, skip_existings, slice_audio, progress=gr.Progress(track_tqdm=True) ):
|
def prepare_dataset_proxy( voice, language, validation_text_length, validation_audio_length, skip_existings, slice_audio, progress=gr.Progress(track_tqdm=True) ):
|
||||||
messages = []
|
messages = []
|
||||||
message = prepare_dataset( get_voices(load_latents=False)[voice], outdir=f"./training/{voice}/", language=language, skip_existings=skip_existings, slice_audio=slice_audio, progress=progress )
|
message = prepare_dataset( get_voices(load_latents=False)[voice], outdir=f"./training/{voice}/", language=language, skip_existings=skip_existings, progress=progress )
|
||||||
|
messages.append(message)
|
||||||
|
if slice_audio:
|
||||||
|
message = slice_dataset( voice )
|
||||||
messages.append(message)
|
messages.append(message)
|
||||||
if validation_text_length > 0 or validation_audio_length > 0:
|
if validation_text_length > 0 or validation_audio_length > 0:
|
||||||
message = prepare_validation_dataset( voice, text_length=validation_text_length, audio_length=validation_audio_length )
|
message = prepare_validation_dataset( voice, text_length=validation_text_length, audio_length=validation_audio_length )
|
||||||
|
@ -418,7 +421,8 @@ def setup_gradio():
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
transcribe_button = gr.Button(value="Transcribe")
|
transcribe_button = gr.Button(value="Transcribe")
|
||||||
prepare_validation_button = gr.Button(value="Prepare Validation")
|
prepare_validation_button = gr.Button(value="(Re)Create Validation Dataset")
|
||||||
|
slice_dataset_button = gr.Button(value="(Re)Slice Audio")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
EXEC_SETTINGS['whisper_backend'] = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
|
EXEC_SETTINGS['whisper_backend'] = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
|
||||||
|
@ -747,6 +751,13 @@ def setup_gradio():
|
||||||
],
|
],
|
||||||
outputs=prepare_dataset_output #console_output
|
outputs=prepare_dataset_output #console_output
|
||||||
)
|
)
|
||||||
|
slice_dataset_button.click(
|
||||||
|
slice_dataset,
|
||||||
|
inputs=[
|
||||||
|
dataset_settings[0]
|
||||||
|
],
|
||||||
|
outputs=prepare_dataset_output
|
||||||
|
)
|
||||||
|
|
||||||
training_refresh_dataset.click(
|
training_refresh_dataset.click(
|
||||||
lambda: gr.update(choices=get_dataset_list()),
|
lambda: gr.update(choices=get_dataset_list()),
|
||||||
|
|
Loading…
Reference in New Issue
Block a user