forked from mrq/ai-voice-cloning
updated bark support, it'll also query for vocos, it actually works (I don't know what specifically was the issue)
This commit is contained in:
parent
76ed34ddd2
commit
547e1d1277
128
src/utils.py
128
src/utils.py
|
@ -86,6 +86,7 @@ if VALLE_ENABLED:
|
|||
TTSES.append('vall-e')
|
||||
|
||||
try:
|
||||
from bark import text_to_semantic
|
||||
from bark.generation import SAMPLE_RATE as BARK_SAMPLE_RATE, ALLOWED_PROMPTS, preload_models, codec_decode, generate_coarse, generate_fine, generate_text_semantic, load_codec_model
|
||||
from bark.api import generate_audio as bark_generate_audio
|
||||
from encodec.utils import convert_audio
|
||||
|
@ -98,12 +99,48 @@ except Exception as e:
|
|||
raise e
|
||||
pass
|
||||
|
||||
if BARK_ENABLED:
|
||||
try:
|
||||
from vocos import Vocos
|
||||
VOCOS_ENABLED = True
|
||||
except Exception as e:
|
||||
VOCOS_ENABLED = False
|
||||
|
||||
try:
|
||||
from hubert.hubert_manager import HuBERTManager
|
||||
|
||||
HUBERT_ENABLED = True
|
||||
except Exception as e:
|
||||
HUBERT_ENABLED = False
|
||||
|
||||
if BARK_ENABLED:
|
||||
TTSES.append('bark')
|
||||
|
||||
def semantic_to_audio_tokens(
|
||||
semantic_tokens,
|
||||
history_prompt = None,
|
||||
temp = 0.7,
|
||||
silent = False,
|
||||
output_full = False,
|
||||
):
|
||||
coarse_tokens = generate_coarse(
|
||||
semantic_tokens, history_prompt=history_prompt, temp=temp, silent=silent, use_kv_caching=True
|
||||
)
|
||||
fine_tokens = generate_fine(coarse_tokens, history_prompt=history_prompt, temp=0.5)
|
||||
|
||||
if output_full:
|
||||
full_generation = {
|
||||
"semantic_prompt": semantic_tokens,
|
||||
"coarse_prompt": coarse_tokens,
|
||||
"fine_prompt": fine_tokens,
|
||||
}
|
||||
return full_generation
|
||||
return fine_tokens
|
||||
|
||||
class Bark_TTS():
|
||||
def __init__(self, small=False):
|
||||
self.input_sample_rate = BARK_SAMPLE_RATE
|
||||
self.output_sample_rate = args.output_sample_rate
|
||||
self.output_sample_rate = BARK_SAMPLE_RATE # args.output_sample_rate
|
||||
|
||||
preload_models(
|
||||
text_use_gpu=True,
|
||||
|
@ -118,7 +155,12 @@ if BARK_ENABLED:
|
|||
force_reload=False
|
||||
)
|
||||
|
||||
def create_voice( self, voice, device='cuda' ):
|
||||
self.device = get_device_name()
|
||||
|
||||
if VOCOS_ENABLED:
|
||||
self.vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(self.device)
|
||||
|
||||
def create_voice( self, voice ):
|
||||
transcription_json = f'./training/{voice}/whisper.json'
|
||||
if not os.path.exists(transcription_json):
|
||||
raise f"Transcription for voice not found: {voice}"
|
||||
|
@ -146,29 +188,75 @@ if BARK_ENABLED:
|
|||
model = load_codec_model(use_gpu=True)
|
||||
wav, sr = torchaudio.load(audio_filepath)
|
||||
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
||||
wav = wav.unsqueeze(0).to(device)
|
||||
|
||||
# Extract discrete codes from EnCodec
|
||||
with torch.no_grad():
|
||||
encoded_frames = model.encode(wav)
|
||||
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze().cpu().numpy() # [n_q, T]
|
||||
|
||||
# get seconds of audio
|
||||
seconds = wav.shape[-1] / model.sample_rate
|
||||
# generate semantic tokens
|
||||
semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7)
|
||||
|
||||
if HUBERT_ENABLED:
|
||||
wav = wav.to(device)
|
||||
|
||||
# Extract discrete codes from EnCodec
|
||||
with torch.no_grad():
|
||||
encoded_frames = model.encode(wav.unsqueeze(0))
|
||||
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T]
|
||||
|
||||
# get seconds of audio
|
||||
seconds = wav.shape[-1] / model.sample_rate
|
||||
|
||||
hubert_manager = HuBERTManager()
|
||||
hubert_manager.make_sure_hubert_installed()
|
||||
hubert_manager.make_sure_tokenizer_installed()
|
||||
|
||||
from hubert.pre_kmeans_hubert import CustomHubert
|
||||
from hubert.customtokenizer import CustomTokenizer
|
||||
|
||||
# Load the HuBERT model
|
||||
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device)
|
||||
|
||||
# Load the CustomTokenizer model
|
||||
tokenizer = CustomTokenizer.load_from_checkpoint('./models/hubert/tokenizer.pth').to(device)
|
||||
else:
|
||||
# Load and pre-process the audio waveform
|
||||
model = load_codec_model(use_gpu=True)
|
||||
wav, sr = torchaudio.load(audio_filepath)
|
||||
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
||||
wav = wav.unsqueeze(0).to(self.device)
|
||||
|
||||
# Extract discrete codes from EnCodec
|
||||
with torch.no_grad():
|
||||
encoded_frames = model.encode(wav)
|
||||
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze().cpu().numpy() # [n_q, T]
|
||||
|
||||
# get seconds of audio
|
||||
seconds = wav.shape[-1] / model.sample_rate
|
||||
|
||||
# generate semantic tokens
|
||||
semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7)
|
||||
|
||||
output_path = './modules/bark/bark/assets/prompts/' + voice.replace("/", "_") + '.npz'
|
||||
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens)
|
||||
|
||||
def inference( self, text, voice, text_temp=0.7, waveform_temp=0.7 ):
|
||||
if not os.path.exists('./modules/bark/bark/assets/prompts/' + voice + '.npz'):
|
||||
self.create_voice( voice )
|
||||
voice = voice.replace("/", "_")
|
||||
if voice not in ALLOWED_PROMPTS:
|
||||
ALLOWED_PROMPTS.add( voice )
|
||||
if voice == "random":
|
||||
voice = None
|
||||
else:
|
||||
if not os.path.exists('./modules/bark/bark/assets/prompts/' + voice + '.npz'):
|
||||
self.create_voice( voice )
|
||||
voice = voice.replace("/", "_")
|
||||
if voice not in ALLOWED_PROMPTS:
|
||||
ALLOWED_PROMPTS.add( voice )
|
||||
|
||||
return (bark_generate_audio(text, history_prompt=voice, text_temp=text_temp, waveform_temp=waveform_temp), BARK_SAMPLE_RATE)
|
||||
semantic_tokens = text_to_semantic(text, history_prompt=voice, temp=text_temp, silent=False)
|
||||
audio_tokens = semantic_to_audio_tokens( semantic_tokens, history_prompt=voice, temp=waveform_temp, silent=False, output_full=False )
|
||||
|
||||
if VOCOS_ENABLED:
|
||||
audio_tokens_torch = torch.from_numpy(audio_tokens).to(self.device)
|
||||
features = self.vocos.codes_to_features(audio_tokens_torch)
|
||||
wav = self.vocos.decode(features, bandwidth_id=torch.tensor([2], device=self.device))
|
||||
else:
|
||||
wav = codec_decode( audio_tokens )
|
||||
|
||||
return ( wav, BARK_SAMPLE_RATE )
|
||||
# return (bark_generate_audio(text, history_prompt=voice, text_temp=text_temp, waveform_temp=waveform_temp), BARK_SAMPLE_RATE)
|
||||
|
||||
args = None
|
||||
tts = None
|
||||
|
@ -371,8 +459,10 @@ def generate_bark(**kwargs):
|
|||
settings['datetime'] = datetime.now().isoformat()
|
||||
|
||||
# save here in case some error happens mid-batch
|
||||
#torchaudio.save(f'{outdir}/{cleanup_voice_name(voice)}_{name}.wav', wav.cpu(), sr)
|
||||
write_wav(f'{outdir}/{cleanup_voice_name(voice)}_{name}.wav', sr, wav)
|
||||
if VOCOS_ENABLED:
|
||||
torchaudio.save(f'{outdir}/{cleanup_voice_name(voice)}_{name}.wav', wav.cpu(), sr)
|
||||
else:
|
||||
write_wav(f'{outdir}/{cleanup_voice_name(voice)}_{name}.wav', sr, wav)
|
||||
wav, sr = torchaudio.load(f'{outdir}/{cleanup_voice_name(voice)}_{name}.wav')
|
||||
|
||||
audio_cache[name] = {
|
||||
|
|
Loading…
Reference in New Issue
Block a user