dataset: training: [ "./training/${voice}/valle/", ] noise: [ "./training/valle/data/Other/noise/", ] speaker_name_getter: "lambda p: p.parts[-3]" # "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'" use_hdf5: False hdf5_name: data.h5 hdf5_flag: r validate: True workers: 4 cache: False phones_range: [4, 64] duration_range: [1.0, 8.0] random_utterance: 1.0 max_prompts: 3 prompt_duration: 3.0 sample_type: path tasks_list: ["tts"] # ["tts", "ns", "sr", "tse", "cse", "nse", "tts"] models: _max_levels: 8 _models: - name: "ar" size: "full" resp_levels: 1 prom_levels: 2 tasks: 8 arch_type: "retnet" - name: "nar" size: "full" resp_levels: 3 prom_levels: 4 tasks: 8 arch_type: "retnet" hyperparameters: batch_size: ${batch_size} gradient_accumulation_steps: ${gradient_accumulation_size} gradient_clipping: 100 optimizer: AdamW learning_rate: 1.0e-4 scheduler_type: "" evaluation: batch_size: ${batch_size} frequency: ${validation_rate} size: 16 steps: 300 ar_temperature: 0.95 nar_temperature: 0.25 trainer: iterations: ${iterations} save_tag: step save_on_oom: True save_on_quit: True export_on_save: True export_on_quit: True save_frequency: ${save_rate} keep_last_checkpoints: 4 aggressive_optimizations: False load_state_dict: True #strict_loading: False #load_tag: "9500" #load_states: False #restart_step_count: True gc_mode: None # "global_step" weight_dtype: bfloat16 backend: deepspeed deepspeed: zero_optimization_level: 2 use_compression_training: True inference: use_vocos: True normalize: False weight_dtype: float32 bitsandbytes: enabled: False injects: True linear: True embedding: True