DL-Art-School/codes/models/diffusion/rrdb_diffusion.py

211 lines
7.2 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ConvGnLelu, default_init_weights, make_layer
from models.diffusion.nn import timestep_embedding
from trainer.networks import register_model
from utils.util import checkpoint
# Conditionally uses torch's checkpoint functionality if it is enabled in the opt file.
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
mid_channels (int): Channel number of intermediate features.
growth_channels (int): Channels for each growth.
"""
def __init__(self, mid_channels=64, growth_channels=32, embedding=False, init_weight=.1):
super(ResidualDenseBlock, self).__init__()
self.embedding = embedding
if embedding:
self.first_conv = ConvGnLelu(mid_channels, mid_channels, activation=True, norm=False, bias=True)
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
mid_channels*4,
mid_channels,
),
)
for i in range(5):
out_channels = mid_channels if i == 4 else growth_channels
self.add_module(
f'conv{i + 1}',
nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3,
1, 1))
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
for i in range(4):
default_init_weights(getattr(self, f'conv{i + 1}'), init_weight)
default_init_weights(self.conv5, 0)
def forward(self, x, emb):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
if self.embedding:
x0 = self.first_conv(x)
emb_out = self.emb_layers(emb).type(x0.dtype)
while len(emb_out.shape) < len(x0.shape):
emb_out = emb_out[..., None]
x0 = x0 + emb_out
else:
x0 = x
x1 = self.lrelu(self.conv1(x0))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
2021-06-06 03:39:19 +00:00
return x5 * .2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
mid_channels (int): Channel number of intermediate features.
growth_channels (int): Channels for each growth.
"""
def __init__(self, mid_channels, growth_channels=32):
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels, embedding=True)
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
self.residual_mult = nn.Parameter(torch.FloatTensor([.1]))
def forward(self, x, emb):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
out = self.rdb1(x, emb)
out = self.rdb2(out, emb)
out = self.rdb3(out, emb)
2021-06-06 03:39:19 +00:00
return out * self.residual_mult + x
class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
Currently, it supports x4 upsampling scale factor.
Args:
in_channels (int): Channel number of inputs.
out_channels (int): Channel number of outputs.
mid_channels (int): Channel number of intermediate features.
Default: 64
num_blocks (int): Block number in the trunk network. Defaults: 23
growth_channels (int): Channels for each growth. Default: 32.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels=64,
num_blocks=23,
growth_channels=32,
body_block=RRDB,
):
super(RRDBNet, self).__init__()
self.num_blocks = num_blocks
self.in_channels = in_channels
self.mid_channels = mid_channels
# The diffusion RRDB starts with a full resolution image and downsamples into a .25 working space
2021-06-06 03:39:19 +00:00
self.input_block = ConvGnLelu(in_channels, mid_channels, kernel_size=7, stride=1, activation=True, norm=False, bias=True)
self.down1 = ConvGnLelu(mid_channels, mid_channels, kernel_size=3, stride=2, activation=True, norm=False, bias=True)
self.down2 = ConvGnLelu(mid_channels, mid_channels, kernel_size=3, stride=2, activation=True, norm=False, bias=True)
# Guided diffusion uses a time embedding.
time_embed_dim = mid_channels * 4
self.time_embed = nn.Sequential(
nn.Linear(mid_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
self.body = make_layer(
body_block,
num_blocks,
mid_channels=mid_channels,
growth_channels=growth_channels)
self.conv_body = nn.Conv2d(self.mid_channels, self.mid_channels, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(self.mid_channels, self.mid_channels, 3, 1, 1)
self.conv_up2 = nn.Conv2d(self.mid_channels*2, self.mid_channels, 3, 1, 1)
self.conv_up3 = None
self.conv_hr = nn.Conv2d(self.mid_channels*2, self.mid_channels, 3, 1, 1)
self.conv_last = nn.Conv2d(self.mid_channels, out_channels, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
for m in [
self.conv_body, self.conv_up1,
self.conv_up2, self.conv_hr
]:
if m is not None:
default_init_weights(m, 1.0)
default_init_weights(self.conv_last, 0)
def forward(self, x, timesteps, low_res=None):
emb = self.time_embed(timestep_embedding(timesteps, self.mid_channels))
_, _, new_height, new_width = x.shape
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
x = torch.cat([x, upsampled], dim=1)
d1 = self.input_block(x)
d2 = self.down1(d1)
feat = self.down2(d2)
for bl in self.body:
feat = checkpoint(bl, feat, emb)
feat = feat[:, :self.mid_channels]
2021-06-06 03:39:19 +00:00
feat = self.conv_body(feat)
# upsample
out = torch.cat([self.lrelu(
2021-06-06 03:39:19 +00:00
self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))),
d2], dim=1)
out = torch.cat([self.lrelu(
2021-06-06 03:39:19 +00:00
self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest'))),
d1], dim=1)
2021-06-06 03:39:19 +00:00
out = self.conv_last(self.lrelu(self.conv_hr(out)))
return out
@register_model
def register_rrdb_diffusion(opt_net, opt):
return RRDBNet(**opt_net['args'])
if __name__ == '__main__':
model = RRDBNet(6,6)
x = torch.randn(1,3,128,128)
l = torch.randn(1,3,32,32)
t = torch.LongTensor([555])
y = model(x, t, l)
print(y.shape, y.mean(), y.std(), y.min(), y.max())