forked from mrq/DL-Art-School
46 lines
2.2 KiB
Python
46 lines
2.2 KiB
Python
|
import torch
|
||
|
|
||
|
from models.diffusion.gaussian_diffusion import GaussianDiffusion, get_named_beta_schedule
|
||
|
from models.diffusion.resample import create_named_schedule_sampler
|
||
|
from trainer.inject import Injector
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
# Injects a gaussian diffusion loss as described by OpenAIs "Improved Denoising Diffusion Probabilistic Models" paper.
|
||
|
# Largely uses OpenAI's own code to do so (all code from models.diffusion.*)
|
||
|
class GaussianDiffusionInjector(Injector):
|
||
|
def __init__(self, opt, env):
|
||
|
super().__init__(opt, env)
|
||
|
self.generator = opt['generator']
|
||
|
opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule'])
|
||
|
self.diffusion = GaussianDiffusion(**opt['diffusion_args'])
|
||
|
self.schedule_sampler = create_named_schedule_sampler(opt['sampler_type'], self.diffusion)
|
||
|
self.model_input_keys = opt_get(opt, ['model_input_keys'], [])
|
||
|
|
||
|
def forward(self, state):
|
||
|
gen = self.env['generators'][self.opt['generator']]
|
||
|
hq = state[self.input]
|
||
|
model_inputs = {k: state[v] for k, v in self.model_input_keys.items()}
|
||
|
t, weights = self.schedule_sampler.sample(hq.shape[0], hq.device)
|
||
|
return {self.output: self.diffusion.training_losses(gen, hq, t, model_kwargs=model_inputs)['loss'] * weights}
|
||
|
|
||
|
|
||
|
# Performs inference using a network trained to predict a reverse diffusion process, which nets a image.
|
||
|
class GaussianDiffusionInferenceInjector(Injector):
|
||
|
def __init__(self, opt, env):
|
||
|
super().__init__(opt, env)
|
||
|
self.generator = opt['generator']
|
||
|
self.output_shape = opt['output_shape']
|
||
|
opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule'])
|
||
|
self.diffusion = GaussianDiffusion(**opt['diffusion_args'])
|
||
|
self.model_input_keys = opt_get(opt, ['model_input_keys'], [])
|
||
|
|
||
|
def forward(self, state):
|
||
|
gen = self.env['generators'][self.opt['generator']]
|
||
|
batch_size = self.output_shape[0]
|
||
|
model_inputs = {k: state[v][:batch_size] for k, v in self.model_input_keys.items()}
|
||
|
gen.eval()
|
||
|
with torch.no_grad():
|
||
|
gen = self.diffusion.p_sample_loop(gen, self.output_shape, model_kwargs=model_inputs)
|
||
|
return {self.output: gen}
|