forked from mrq/DL-Art-School
488 lines
17 KiB
Python
488 lines
17 KiB
Python
|
import math
|
||
|
import copy
|
||
|
import os
|
||
|
import random
|
||
|
from functools import wraps, partial
|
||
|
from math import floor
|
||
|
|
||
|
import torch
|
||
|
import torchvision
|
||
|
from torch import nn, einsum
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from kornia import augmentation as augs
|
||
|
from kornia import filters, color
|
||
|
|
||
|
from einops import rearrange
|
||
|
|
||
|
# helper functions
|
||
|
from trainer.networks import register_model, create_model
|
||
|
|
||
|
|
||
|
def identity(t):
|
||
|
return t
|
||
|
|
||
|
def default(val, def_val):
|
||
|
return def_val if val is None else val
|
||
|
|
||
|
def rand_true(prob):
|
||
|
return random.random() < prob
|
||
|
|
||
|
def singleton(cache_key):
|
||
|
def inner_fn(fn):
|
||
|
@wraps(fn)
|
||
|
def wrapper(self, *args, **kwargs):
|
||
|
instance = getattr(self, cache_key)
|
||
|
if instance is not None:
|
||
|
return instance
|
||
|
|
||
|
instance = fn(self, *args, **kwargs)
|
||
|
setattr(self, cache_key, instance)
|
||
|
return instance
|
||
|
return wrapper
|
||
|
return inner_fn
|
||
|
|
||
|
def get_module_device(module):
|
||
|
return next(module.parameters()).device
|
||
|
|
||
|
def set_requires_grad(model, val):
|
||
|
for p in model.parameters():
|
||
|
p.requires_grad = val
|
||
|
|
||
|
def cutout_coordinates(image, ratio_range = (0.6, 0.8)):
|
||
|
_, _, orig_h, orig_w = image.shape
|
||
|
|
||
|
ratio_lo, ratio_hi = ratio_range
|
||
|
random_ratio = ratio_lo + random.random() * (ratio_hi - ratio_lo)
|
||
|
w, h = floor(random_ratio * orig_w), floor(random_ratio * orig_h)
|
||
|
coor_x = floor((orig_w - w) * random.random())
|
||
|
coor_y = floor((orig_h - h) * random.random())
|
||
|
return ((coor_y, coor_y + h), (coor_x, coor_x + w)), random_ratio
|
||
|
|
||
|
def cutout_and_resize(image, coordinates, output_size = None, mode = 'nearest'):
|
||
|
shape = image.shape
|
||
|
output_size = default(output_size, shape[2:])
|
||
|
(y0, y1), (x0, x1) = coordinates
|
||
|
cutout_image = image[:, :, y0:y1, x0:x1]
|
||
|
return F.interpolate(cutout_image, size = output_size, mode = mode)
|
||
|
|
||
|
# augmentation utils
|
||
|
|
||
|
class RandomApply(nn.Module):
|
||
|
def __init__(self, fn, p):
|
||
|
super().__init__()
|
||
|
self.fn = fn
|
||
|
self.p = p
|
||
|
def forward(self, x):
|
||
|
if random.random() > self.p:
|
||
|
return x
|
||
|
return self.fn(x)
|
||
|
|
||
|
# exponential moving average
|
||
|
|
||
|
class EMA():
|
||
|
def __init__(self, beta):
|
||
|
super().__init__()
|
||
|
self.beta = beta
|
||
|
|
||
|
def update_average(self, old, new):
|
||
|
if old is None:
|
||
|
return new
|
||
|
return old * self.beta + (1 - self.beta) * new
|
||
|
|
||
|
def update_moving_average(ema_updater, ma_model, current_model):
|
||
|
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||
|
old_weight, up_weight = ma_params.data, current_params.data
|
||
|
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
||
|
|
||
|
# loss fn
|
||
|
|
||
|
def loss_fn(x, y):
|
||
|
x = F.normalize(x, dim=-1, p=2)
|
||
|
y = F.normalize(y, dim=-1, p=2)
|
||
|
return 2 - 2 * (x * y).sum(dim=-1)
|
||
|
|
||
|
# classes
|
||
|
|
||
|
class MLP(nn.Module):
|
||
|
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
||
|
super().__init__()
|
||
|
self.net = nn.Sequential(
|
||
|
nn.Linear(chan, inner_dim),
|
||
|
nn.BatchNorm1d(inner_dim),
|
||
|
nn.ReLU(),
|
||
|
nn.Linear(inner_dim, chan_out)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.net(x)
|
||
|
|
||
|
class ConvMLP(nn.Module):
|
||
|
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
|
||
|
super().__init__()
|
||
|
self.net = nn.Sequential(
|
||
|
nn.Conv2d(chan, inner_dim, 1),
|
||
|
nn.BatchNorm2d(inner_dim),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(inner_dim, chan_out, 1)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.net(x)
|
||
|
|
||
|
class PPM(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
chan,
|
||
|
num_layers = 1,
|
||
|
gamma = 2):
|
||
|
super().__init__()
|
||
|
self.gamma = gamma
|
||
|
|
||
|
if num_layers == 0:
|
||
|
self.transform_net = nn.Identity()
|
||
|
elif num_layers == 1:
|
||
|
self.transform_net = nn.Conv2d(chan, chan, 1)
|
||
|
elif num_layers == 2:
|
||
|
self.transform_net = nn.Sequential(
|
||
|
nn.Conv2d(chan, chan, 1),
|
||
|
nn.BatchNorm2d(chan),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(chan, chan, 1)
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError('num_layers must be one of 0, 1, or 2')
|
||
|
|
||
|
def forward(self, x):
|
||
|
xi = x[:, :, :, :, None, None]
|
||
|
xj = x[:, :, None, None, :, :]
|
||
|
similarity = F.relu(F.cosine_similarity(xi, xj, dim = 1)) ** self.gamma
|
||
|
|
||
|
transform_out = self.transform_net(x)
|
||
|
out = einsum('b x y h w, b c h w -> b c x y', similarity, transform_out)
|
||
|
return out
|
||
|
|
||
|
# a wrapper class for the base neural network
|
||
|
# will manage the interception of the hidden layer output
|
||
|
# and pipe it into the projecter and predictor nets
|
||
|
|
||
|
class NetWrapper(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
net,
|
||
|
projection_size,
|
||
|
projection_hidden_size,
|
||
|
layer_pixel = -2,
|
||
|
layer_instance = -2
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.net = net
|
||
|
self.layer_pixel = layer_pixel
|
||
|
self.layer_instance = layer_instance
|
||
|
|
||
|
self.pixel_projector = None
|
||
|
self.instance_projector = None
|
||
|
|
||
|
self.projection_size = projection_size
|
||
|
self.projection_hidden_size = projection_hidden_size
|
||
|
|
||
|
self.hidden_pixel = None
|
||
|
self.hidden_instance = None
|
||
|
self.hook_registered = False
|
||
|
|
||
|
def _find_layer(self, layer_id):
|
||
|
if type(layer_id) == str:
|
||
|
modules = dict([*self.net.named_modules()])
|
||
|
return modules.get(layer_id, None)
|
||
|
elif type(layer_id) == int:
|
||
|
children = [*self.net.children()]
|
||
|
return children[layer_id]
|
||
|
return None
|
||
|
|
||
|
def _hook(self, attr_name, _, __, output):
|
||
|
setattr(self, attr_name, output)
|
||
|
|
||
|
def _register_hook(self):
|
||
|
pixel_layer = self._find_layer(self.layer_pixel)
|
||
|
instance_layer = self._find_layer(self.layer_instance)
|
||
|
|
||
|
assert pixel_layer is not None, f'hidden layer ({self.layer_pixel}) not found'
|
||
|
assert instance_layer is not None, f'hidden layer ({self.layer_instance}) not found'
|
||
|
|
||
|
pixel_layer.register_forward_hook(partial(self._hook, 'hidden_pixel'))
|
||
|
instance_layer.register_forward_hook(partial(self._hook, 'hidden_instance'))
|
||
|
self.hook_registered = True
|
||
|
|
||
|
@singleton('pixel_projector')
|
||
|
def _get_pixel_projector(self, hidden):
|
||
|
_, dim, *_ = hidden.shape
|
||
|
projector = ConvMLP(dim, self.projection_size, self.projection_hidden_size)
|
||
|
return projector.to(hidden)
|
||
|
|
||
|
@singleton('instance_projector')
|
||
|
def _get_instance_projector(self, hidden):
|
||
|
_, dim = hidden.shape
|
||
|
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
||
|
return projector.to(hidden)
|
||
|
|
||
|
def get_representation(self, x):
|
||
|
if not self.hook_registered:
|
||
|
self._register_hook()
|
||
|
|
||
|
_ = self.net(x)
|
||
|
hidden_pixel = self.hidden_pixel
|
||
|
hidden_instance = self.hidden_instance
|
||
|
self.hidden_pixel = None
|
||
|
self.hidden_instance = None
|
||
|
assert hidden_pixel is not None, f'hidden pixel layer {self.layer_pixel} never emitted an output'
|
||
|
assert hidden_instance is not None, f'hidden instance layer {self.layer_instance} never emitted an output'
|
||
|
return hidden_pixel, hidden_instance
|
||
|
|
||
|
def forward(self, x):
|
||
|
pixel_representation, instance_representation = self.get_representation(x)
|
||
|
instance_representation = instance_representation.flatten(1)
|
||
|
|
||
|
pixel_projector = self._get_pixel_projector(pixel_representation)
|
||
|
instance_projector = self._get_instance_projector(instance_representation)
|
||
|
|
||
|
pixel_projection = pixel_projector(pixel_representation)
|
||
|
instance_projection = instance_projector(instance_representation)
|
||
|
return pixel_projection, instance_projection
|
||
|
|
||
|
# main class
|
||
|
|
||
|
class PixelCL(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
net,
|
||
|
image_size,
|
||
|
hidden_layer_pixel = -2,
|
||
|
hidden_layer_instance = -2,
|
||
|
projection_size = 256,
|
||
|
projection_hidden_size = 2048,
|
||
|
augment_fn = None,
|
||
|
augment_fn2 = None,
|
||
|
prob_rand_hflip = 0.25,
|
||
|
moving_average_decay = 0.99,
|
||
|
ppm_num_layers = 1,
|
||
|
ppm_gamma = 2,
|
||
|
distance_thres = 0.7,
|
||
|
similarity_temperature = 0.3,
|
||
|
alpha = 1.,
|
||
|
use_pixpro = True,
|
||
|
cutout_ratio_range = (0.6, 0.8),
|
||
|
cutout_interpolate_mode = 'nearest',
|
||
|
coord_cutout_interpolate_mode = 'bilinear'
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
DEFAULT_AUG = nn.Sequential(
|
||
|
RandomApply(augs.ColorJitter(0.3, 0.3, 0.3, 0.2), p=0.8),
|
||
|
augs.RandomGrayscale(p=0.2),
|
||
|
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)
|
||
|
)
|
||
|
|
||
|
self.augment1 = default(augment_fn, DEFAULT_AUG)
|
||
|
self.augment2 = default(augment_fn2, self.augment1)
|
||
|
self.prob_rand_hflip = prob_rand_hflip
|
||
|
|
||
|
self.online_encoder = NetWrapper(
|
||
|
net = net,
|
||
|
projection_size = projection_size,
|
||
|
projection_hidden_size = projection_hidden_size,
|
||
|
layer_pixel = hidden_layer_pixel,
|
||
|
layer_instance = hidden_layer_instance
|
||
|
)
|
||
|
|
||
|
self.target_encoder = None
|
||
|
self.target_ema_updater = EMA(moving_average_decay)
|
||
|
|
||
|
self.distance_thres = distance_thres
|
||
|
self.similarity_temperature = similarity_temperature
|
||
|
self.alpha = alpha
|
||
|
|
||
|
self.use_pixpro = use_pixpro
|
||
|
|
||
|
if use_pixpro:
|
||
|
self.propagate_pixels = PPM(
|
||
|
chan = projection_size,
|
||
|
num_layers = ppm_num_layers,
|
||
|
gamma = ppm_gamma
|
||
|
)
|
||
|
|
||
|
self.cutout_ratio_range = cutout_ratio_range
|
||
|
self.cutout_interpolate_mode = cutout_interpolate_mode
|
||
|
self.coord_cutout_interpolate_mode = coord_cutout_interpolate_mode
|
||
|
|
||
|
# instance level predictor
|
||
|
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||
|
|
||
|
# get device of network and make wrapper same device
|
||
|
device = get_module_device(net)
|
||
|
self.to(device)
|
||
|
|
||
|
# send a mock image tensor to instantiate singleton parameters
|
||
|
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
|
||
|
|
||
|
@singleton('target_encoder')
|
||
|
def _get_target_encoder(self):
|
||
|
target_encoder = copy.deepcopy(self.online_encoder)
|
||
|
set_requires_grad(target_encoder, False)
|
||
|
return target_encoder
|
||
|
|
||
|
def reset_moving_average(self):
|
||
|
del self.target_encoder
|
||
|
self.target_encoder = None
|
||
|
|
||
|
def update_moving_average(self):
|
||
|
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
||
|
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
|
||
|
|
||
|
def forward(self, x):
|
||
|
shape, device, prob_flip = x.shape, x.device, self.prob_rand_hflip
|
||
|
|
||
|
rand_flip_fn = lambda t: torch.flip(t, dims = (-1,))
|
||
|
|
||
|
flip_image_one, flip_image_two = rand_true(prob_flip), rand_true(prob_flip)
|
||
|
flip_image_one_fn = rand_flip_fn if flip_image_one else identity
|
||
|
flip_image_two_fn = rand_flip_fn if flip_image_two else identity
|
||
|
|
||
|
cutout_coordinates_one, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
||
|
cutout_coordinates_two, _ = cutout_coordinates(x, self.cutout_ratio_range)
|
||
|
|
||
|
image_one_cutout = cutout_and_resize(x, cutout_coordinates_one, mode = self.cutout_interpolate_mode)
|
||
|
image_two_cutout = cutout_and_resize(x, cutout_coordinates_two, mode = self.cutout_interpolate_mode)
|
||
|
|
||
|
image_one_cutout = flip_image_one_fn(image_one_cutout)
|
||
|
image_two_cutout = flip_image_two_fn(image_two_cutout)
|
||
|
|
||
|
image_one_cutout, image_two_cutout = self.augment1(image_one_cutout), self.augment2(image_two_cutout)
|
||
|
|
||
|
self.aug1 = image_one_cutout.detach().clone()
|
||
|
self.aug2 = image_two_cutout.detach().clone()
|
||
|
|
||
|
proj_pixel_one, proj_instance_one = self.online_encoder(image_one_cutout)
|
||
|
proj_pixel_two, proj_instance_two = self.online_encoder(image_two_cutout)
|
||
|
|
||
|
image_h, image_w = shape[2:]
|
||
|
|
||
|
proj_image_shape = proj_pixel_one.shape[2:]
|
||
|
proj_image_h, proj_image_w = proj_image_shape
|
||
|
|
||
|
coordinates = torch.meshgrid(
|
||
|
torch.arange(image_h, device = device),
|
||
|
torch.arange(image_w, device = device)
|
||
|
)
|
||
|
|
||
|
coordinates = torch.stack(coordinates).unsqueeze(0).float()
|
||
|
coordinates /= math.sqrt(image_h ** 2 + image_w ** 2)
|
||
|
coordinates[:, 0] *= proj_image_h
|
||
|
coordinates[:, 1] *= proj_image_w
|
||
|
|
||
|
proj_coors_one = cutout_and_resize(coordinates, cutout_coordinates_one, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
|
||
|
proj_coors_two = cutout_and_resize(coordinates, cutout_coordinates_two, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
|
||
|
|
||
|
proj_coors_one = flip_image_one_fn(proj_coors_one)
|
||
|
proj_coors_two = flip_image_two_fn(proj_coors_two)
|
||
|
|
||
|
proj_coors_one, proj_coors_two = map(lambda t: rearrange(t, 'b c h w -> (b h w) c'), (proj_coors_one, proj_coors_two))
|
||
|
pdist = nn.PairwiseDistance(p = 2)
|
||
|
|
||
|
num_pixels = proj_coors_one.shape[0]
|
||
|
|
||
|
proj_coors_one_expanded = proj_coors_one[:, None].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
|
||
|
proj_coors_two_expanded = proj_coors_two[None, :].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
|
||
|
|
||
|
distance_matrix = pdist(proj_coors_one_expanded, proj_coors_two_expanded)
|
||
|
distance_matrix = distance_matrix.reshape(num_pixels, num_pixels)
|
||
|
|
||
|
positive_mask_one_two = distance_matrix < self.distance_thres
|
||
|
positive_mask_two_one = positive_mask_one_two.t()
|
||
|
|
||
|
with torch.no_grad():
|
||
|
target_encoder = self._get_target_encoder()
|
||
|
target_proj_pixel_one, target_proj_instance_one = target_encoder(image_one_cutout)
|
||
|
target_proj_pixel_two, target_proj_instance_two = target_encoder(image_two_cutout)
|
||
|
|
||
|
# flatten all the pixel projections
|
||
|
|
||
|
flatten = lambda t: rearrange(t, 'b c h w -> b c (h w)')
|
||
|
|
||
|
target_proj_pixel_one, target_proj_pixel_two = list(map(flatten, (target_proj_pixel_one, target_proj_pixel_two)))
|
||
|
|
||
|
# get total number of positive pixel pairs
|
||
|
|
||
|
positive_pixel_pairs = positive_mask_one_two.sum()
|
||
|
|
||
|
# get instance level loss
|
||
|
|
||
|
pred_instance_one = self.online_predictor(proj_instance_one)
|
||
|
pred_instance_two = self.online_predictor(proj_instance_two)
|
||
|
|
||
|
loss_instance_one = loss_fn(pred_instance_one, target_proj_instance_two.detach())
|
||
|
loss_instance_two = loss_fn(pred_instance_two, target_proj_instance_one.detach())
|
||
|
|
||
|
instance_loss = (loss_instance_one + loss_instance_two).mean()
|
||
|
|
||
|
if positive_pixel_pairs == 0:
|
||
|
return instance_loss, 0
|
||
|
|
||
|
if not self.use_pixpro:
|
||
|
# calculate pix contrast loss
|
||
|
|
||
|
proj_pixel_one, proj_pixel_two = list(map(flatten, (proj_pixel_one, proj_pixel_two)))
|
||
|
|
||
|
similarity_one_two = F.cosine_similarity(proj_pixel_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1) / self.similarity_temperature
|
||
|
similarity_two_one = F.cosine_similarity(proj_pixel_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1) / self.similarity_temperature
|
||
|
|
||
|
loss_pix_one_two = -torch.log(
|
||
|
similarity_one_two.masked_select(positive_mask_one_two[None, ...]).exp().sum() /
|
||
|
similarity_one_two.exp().sum()
|
||
|
)
|
||
|
|
||
|
loss_pix_two_one = -torch.log(
|
||
|
similarity_two_one.masked_select(positive_mask_two_one[None, ...]).exp().sum() /
|
||
|
similarity_two_one.exp().sum()
|
||
|
)
|
||
|
|
||
|
pix_loss = (loss_pix_one_two + loss_pix_two_one) / 2
|
||
|
else:
|
||
|
# calculate pix pro loss
|
||
|
|
||
|
propagated_pixels_one = self.propagate_pixels(proj_pixel_one)
|
||
|
propagated_pixels_two = self.propagate_pixels(proj_pixel_two)
|
||
|
|
||
|
propagated_pixels_one, propagated_pixels_two = list(map(flatten, (propagated_pixels_one, propagated_pixels_two)))
|
||
|
|
||
|
propagated_similarity_one_two = F.cosine_similarity(propagated_pixels_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1)
|
||
|
propagated_similarity_two_one = F.cosine_similarity(propagated_pixels_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1)
|
||
|
|
||
|
loss_pixpro_one_two = - propagated_similarity_one_two.masked_select(positive_mask_one_two[None, ...]).mean()
|
||
|
loss_pixpro_two_one = - propagated_similarity_two_one.masked_select(positive_mask_two_one[None, ...]).mean()
|
||
|
|
||
|
pix_loss = (loss_pixpro_one_two + loss_pixpro_two_one) / 2
|
||
|
|
||
|
# total loss
|
||
|
|
||
|
loss = pix_loss * self.alpha + instance_loss
|
||
|
return loss, positive_pixel_pairs
|
||
|
|
||
|
# Allows visualizing what the augmentor is up to.
|
||
|
def visual_dbg(self, step, path):
|
||
|
if not hasattr(self, 'aug1'):
|
||
|
return
|
||
|
torchvision.utils.save_image(self.aug1, os.path.join(path, "%i_aug1.png" % (step,)))
|
||
|
torchvision.utils.save_image(self.aug2, os.path.join(path, "%i_aug2.png" % (step,)))
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_pixel_contrastive_learner(opt_net, opt):
|
||
|
subnet = create_model(opt, opt_net['subnet'])
|
||
|
kwargs = opt_net['kwargs']
|
||
|
if 'subnet_pretrain_path' in opt_net.keys():
|
||
|
sd = torch.load(opt_net['subnet_pretrain_path'])
|
||
|
subnet.load_state_dict(sd, strict=False)
|
||
|
return PixelCL(subnet, **kwargs)
|