DL-Art-School/codes/scripts/classify_into_folders.py

69 lines
2.5 KiB
Python
Raw Normal View History

import os.path as osp
import logging
import time
import argparse
import os
import utils
import utils.options as option
import utils.util as util
2020-12-18 16:18:34 +00:00
from trainer.ExtensibleTrainer import ExtensibleTrainer
from data import create_dataset, create_dataloader
from tqdm import tqdm
import torch
import torchvision
if __name__ == "__main__":
#### options
torch.backends.cudnn.benchmark = True
want_metrics = False
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/train_imgset_structural_classifier.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
utils.util.loaded_options = opt
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
dataset_opt['dataset']['includes_labels'] = False
del dataset_opt['dataset']['labeler']
test_set = create_dataset(dataset_opt)
if hasattr(test_set, 'wrapped_dataset'):
test_set = test_set.wrapped_dataset
test_loader = create_dataloader(test_set, dataset_opt, opt)
logger.info('Number of test images: {:d}'.format(len(test_set)))
test_loaders.append(test_loader)
model = ExtensibleTrainer(opt)
gen = model.netsG['generator']
label_to_search_for = 4
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], opt['name'])
util.mkdir(dataset_dir)
tq = tqdm(test_loader)
step = 1
for data in tq:
hq = data['hq'].to('cuda')
res = gen(hq)
res = torch.nn.functional.interpolate(res, size=hq.shape[2:], mode="nearest")
res_lbl = res[:, label_to_search_for, :, :].unsqueeze(1)
res_lbl_mask = (1.0 * (res_lbl > .5))*.5 + .5
hq = hq * res_lbl_mask
torchvision.utils.save_image(hq, os.path.join(dataset_dir, "%i.png" % (step,)))
step += 1