DL-Art-School/dlas/utils/convert_model.py

78 lines
2.7 KiB
Python
Raw Normal View History

# Tool that can be used to add a new layer into an existing model save file. Primarily useful for "progressive"
# models which can be trained piecemeal.
import os
import torch
from dlas.models import create_model
from dlas.utils import options as option
def get_model_for_opt_file(filename):
opt = option.parse(filename, is_train=True)
opt = option.dict_to_nonedict(opt)
model = create_model(opt)
return model, opt
def copy_state_dict_list(l_from, l_to):
for i, v in enumerate(l_from):
if isinstance(v, list):
copy_state_dict_list(v, l_to[i])
elif isinstance(v, dict):
copy_state_dict(v, l_to[i])
else:
l_to[i] = v
def copy_state_dict(dict_from, dict_to):
for k in dict_from.keys():
if k == 'optimizers':
for j in range(len(dict_from[k][0]['param_groups'])):
for p in dict_to[k][0]['param_groups'][j]['params']:
del dict_to[k][0]['state']
dict_to[k][0]['param_groups'][j] = dict_from[k][0]['param_groups'][j]
dict_to[k][0]['state'].update(dict_from[k][0]['state'])
print(len(dict_from[k][0].keys()), dict_from[k][0].keys())
print(len(dict_to[k][0].keys()), dict_to[k][0].keys())
assert k in dict_to.keys()
if isinstance(dict_from[k], dict):
copy_state_dict(dict_from[k], dict_to[k])
elif isinstance(dict_from[k], list):
copy_state_dict_list(dict_from[k], dict_to[k])
else:
dict_to[k] = dict_from[k]
return dict_to
if __name__ == "__main__":
os.chdir("..")
model_from, opt_from = get_model_for_opt_file(
"../options/train_imgset_pixgan_progressive_srg2.yml")
model_to, _ = get_model_for_opt_file(
"../options/train_imgset_pixgan_progressive_srg2_.yml")
'''
model_to.netG.module.update_for_step(1000000000000)
l = torch.nn.MSELoss()
o, _ = model_to.netG(torch.randn(1, 3, 64, 64))
l(o, torch.randn_like(o)).backward()
model_to.optimizer_G.step()
o = model_to.netD(torch.randn(1, 3, 128, 128))
l(o, torch.randn_like(o)).backward()
model_to.optimizer_D.step()
'''
torch.save(copy_state_dict(model_from.netG.state_dict(),
model_to.netG.state_dict()), "converted_g.pth")
torch.save(copy_state_dict(model_from.netD.state_dict(),
model_to.netD.state_dict()), "converted_d.pth")
# Also convert the state.
resume_state_from = torch.load(opt_from['path']['resume_state'])
resume_state_to = model_to.save_training_state({}, return_state=True)
resume_state_from['optimizers'][0]['param_groups'].append(
resume_state_to['optimizers'][0]['param_groups'][-1])
torch.save(resume_state_from, "converted_state.pth")