DL-Art-School/dlas/utils/options.py

138 lines
5.6 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import logging
import os.path as osp
2019-08-23 13:42:47 +00:00
import yaml
from dlas.utils.util import OrderedYaml
2019-08-23 13:42:47 +00:00
Loader, Dumper = OrderedYaml()
2019-08-23 13:42:47 +00:00
def parse(opt_path, is_train=True):
with open(opt_path, mode='r') as f:
opt = yaml.load(f, Loader=Loader)
opt['is_train'] = is_train
# datasets
2020-05-27 23:09:11 +00:00
if 'datasets' in opt.keys():
for phase, dataset in opt['datasets'].items():
phase = phase.split('_')[0]
dataset['phase'] = phase
is_lmdb = False
''' LMDB is not supported at this point with the mods I've been making.
if dataset.get('dataroot_GT', None) is not None:
dataset['dataroot_GT'] = osp.expanduser(dataset['dataroot_GT'])
if dataset['dataroot_GT'].endswith('lmdb'):
is_lmdb = True
if dataset.get('dataroot_LQ', None) is not None:
dataset['dataroot_LQ'] = osp.expanduser(dataset['dataroot_LQ'])
if dataset['dataroot_LQ'].endswith('lmdb'):
is_lmdb = True
'''
dataset['data_type'] = 'lmdb' if is_lmdb else 'img'
if dataset['mode'].endswith('mc'): # for memcached
dataset['data_type'] = 'mc'
dataset['mode'] = dataset['mode'].replace('_mc', '')
2019-08-23 13:42:47 +00:00
# path
2020-09-26 04:19:38 +00:00
if 'path' in opt.keys():
for key, path in opt['path'].items():
2022-05-23 16:58:28 +00:00
if path and key in opt['path'] and (key not in ['strict_load', 'optimizer_reset']):
2020-09-26 04:19:38 +00:00
opt['path'][key] = osp.expanduser(path)
else:
opt['path'] = {}
2023-03-09 00:29:25 +00:00
opt['path']['root'] = "./"
2019-08-23 13:42:47 +00:00
if is_train:
experiments_root = osp.join(
opt['path']['root'], 'training', opt['name'], "finetune")
2019-08-23 13:42:47 +00:00
opt['path']['experiments_root'] = experiments_root
opt['path']['models'] = osp.join(experiments_root, 'models')
opt['path']['training_state'] = osp.join(
experiments_root, 'training_state')
2019-08-23 13:42:47 +00:00
opt['path']['log'] = experiments_root
opt['path']['val_images'] = osp.join(experiments_root, 'val_images')
# change some options for debug mode
if 'debug' in opt['name']:
opt['train']['val_freq'] = 8
opt['logger']['print_freq'] = 1
opt['logger']['save_checkpoint_freq'] = 8
else: # test
results_root = osp.join(opt['path']['root'], 'results', opt['name'])
opt['path']['results_root'] = results_root
opt['path']['log'] = results_root
return opt
def dict2str(opt, indent_l=1):
'''dict to string for logger'''
msg = ''
for k, v in opt.items():
if isinstance(v, dict):
msg += ' ' * (indent_l * 2) + k + ':[\n'
msg += dict2str(v, indent_l + 1)
msg += ' ' * (indent_l * 2) + ']\n'
else:
msg += ' ' * (indent_l * 2) + k + ': ' + str(v) + '\n'
return msg
class NoneDict(dict):
def __missing__(self, key):
return None
# convert to NoneDict, which return None for missing key.
def dict_to_nonedict(opt):
if isinstance(opt, dict):
new_opt = dict()
for key, sub_opt in opt.items():
new_opt[key] = dict_to_nonedict(sub_opt)
return NoneDict(**new_opt)
elif isinstance(opt, list):
return [dict_to_nonedict(sub_opt) for sub_opt in opt]
else:
return opt
def check_resume(opt, resume_iter):
'''Check resume states and pretrain_model paths'''
logger = logging.getLogger('base')
if opt['path']['resume_state']:
if opt['path'].get('pretrain_model_G', None) is not None or opt['path'].get(
'pretrain_model_D', None) is not None:
logger.warning(
'pretrain_model path will be ignored when resuming training.')
2019-08-23 13:42:47 +00:00
# Automatically fill in the network paths for a given resume iteration.
for k in opt['networks'].keys():
pt_key = 'pretrain_model_%s' % (k,)
if pt_key in opt['path'].keys():
# This is a dicey, error prone situation that has bitten me in both ways it can be handled. Opt for
# a big, verbose error message.
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!WARNING!! YOU SPECIFIED A PRETRAINED MODEL PATH!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!AND A RESUME STATE PATH. THERE IS NO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!GOOD WAY TO HANDLE THIS SO WE JUST IGNORE!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!THE MODEL PATH!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
2021-10-29 20:47:31 +00:00
opt['path'][pt_key] = osp.join(opt['path']['models'],
'{}_{}.pth'.format(resume_iter, k))
2021-10-29 20:47:31 +00:00
logger.info('Set model [%s] to %s' % (k, opt['path'][pt_key]))