forked from mrq/DL-Art-School
21 lines
768 B
Python
21 lines
768 B
Python
|
import os
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from data.util import find_files_of_type, is_audio_file
|
||
|
from trainer.injectors.audio_injectors import MelSpectrogramInjector
|
||
|
from utils.util import load_audio
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
path = 'C:\\Users\\jbetk\\Documents\\tmp\\some_audio'
|
||
|
|
||
|
inj = MelSpectrogramInjector({'in': 'wav', 'out': 'mel',
|
||
|
'mel_fmax': 12000, 'sampling_rate': 22050, 'n_mel_channels': 100
|
||
|
},{})
|
||
|
audio = find_files_of_type('img', path, qualifier=is_audio_file)[0]
|
||
|
for clip in audio:
|
||
|
if not clip.endswith('.wav'):
|
||
|
continue
|
||
|
wav = load_audio(clip, 24000)
|
||
|
mel = inj({'wav': wav.unsqueeze(0)})['mel']
|
||
|
torch.save(mel, clip.replace('.wav', '.mel'))
|