forked from mrq/DL-Art-School
42 lines
1.5 KiB
Python
42 lines
1.5 KiB
Python
|
import os
|
||
|
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from scripts.audio.gen.speech_synthesis_utils import load_speech_dvae, wav_to_mel
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
input_folder = 'C:\\Users\\James\\Downloads\\lex2\\lexfridman_training_mp3'
|
||
|
output_folder = 'C:\\Users\\James\\Downloads\\lex2\\quantized'
|
||
|
|
||
|
params = {
|
||
|
'mode': 'unsupervised_audio',
|
||
|
'path': [input_folder],
|
||
|
'cache_path': f'{input_folder}/cache.pth',
|
||
|
'sampling_rate': 22050,
|
||
|
'pad_to_samples': 441000,
|
||
|
'resample_clip': False,
|
||
|
'extra_samples': 0,
|
||
|
'phase': 'train',
|
||
|
'n_workers': 2,
|
||
|
'batch_size': 64,
|
||
|
}
|
||
|
from data import create_dataset, create_dataloader
|
||
|
os.makedirs(output_folder, exist_ok=True)
|
||
|
|
||
|
ds = create_dataset(params)
|
||
|
dl = create_dataloader(ds, params)
|
||
|
|
||
|
dvae = load_speech_dvae().cuda()
|
||
|
with torch.no_grad():
|
||
|
for batch in tqdm(dl):
|
||
|
audio = batch['clip'].cuda()
|
||
|
mel = wav_to_mel(audio)
|
||
|
codes = dvae.get_codebook_indices(mel)
|
||
|
for i in range(audio.shape[0]):
|
||
|
c = codes[i, :batch['clip_lengths'][i]//1024+4] # +4 seems empirically to be a good clipping point - it seems to preserve the termination codes.
|
||
|
fn = batch['path'][i]
|
||
|
outp = os.path.join(output_folder, os.path.relpath(fn, input_folder) + ".pth")
|
||
|
os.makedirs(os.path.dirname(outp), exist_ok=True)
|
||
|
torch.save(c.tolist(), outp)
|