From 0e3ea63a14857eb2745f8eff472860440eacded1 Mon Sep 17 00:00:00 2001 From: James Betker Date: Mon, 5 Oct 2020 18:01:50 -0600 Subject: [PATCH] Misc --- codes/test.py | 163 +++++++++++-------------------------------------- codes/train.py | 2 +- 2 files changed, 36 insertions(+), 129 deletions(-) diff --git a/codes/test.py b/codes/test.py index f025290b..2c272d1f 100644 --- a/codes/test.py +++ b/codes/test.py @@ -17,135 +17,42 @@ from tqdm import tqdm import torch import models.networks as networks +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors -# Concepts: Swap transformations around. Normalize attention. Disable individual switches, both randomly and one at -# a time, starting at the last switch. Pick random regions in an image and print out the full attention vector for -# each switch. Yield an output directory name for each alteration and None when last alteration is completed. -def alter_srg(srg: srg.ConfigurableSwitchedResidualGenerator2): - # First alteration, strip off switches one at a time. - yield "naked" - - ''' - for i in range(1, len(srg.switches)): - srg.switches = srg.switches[:-i] - yield "stripped-%i" % (i,) - ''' - - for sw in srg.switches: - sw.set_temperature(.001) - yield "specific" - - for sw in srg.switches: - sw.set_temperature(1000) - yield "normalized" - - for sw in srg.switches: - sw.set_temperature(1) - sw.switch.attention_norm = None - yield "no_anorm" - return None - -def analyze_srg(srg: srg.ConfigurableSwitchedResidualGenerator2, path, alteration_suffix): - mean_hists = [compute_attention_specificity(att, 2) for att in srg.attentions] - means = [i[0] for i in mean_hists] - hists = [torch.histc(i[1].clone().detach().cpu().flatten().float(), bins=srg.transformation_counts) for i in mean_hists] - hists = [h / torch.sum(h) for h in hists] - for i in range(len(means)): - print("%s - switch_%i_specificity" % (alteration_suffix, i), means[i]) - print("%s - switch_%i_histogram" % (alteration_suffix, i), hists[i]) - - [save_attention_to_image_rgb(path, srg.attentions[i], srg.transformation_counts, alteration_suffix, i) for i in range(len(srg.attentions))] - - -def forward_pass(model, output_dir, alteration_suffix=''): - model.feed_data(data, need_GT=need_GT) - model.test() - - visuals = model.get_current_visuals(need_GT)['rlt'].cpu() - fea_loss = 0 - for i in range(visuals.shape[0]): - img_path = data['GT_path'][i] if need_GT else data['LQ_path'][i] - img_name = osp.splitext(osp.basename(img_path))[0] - - sr_img = util.tensor2img(visuals[i]) # uint8 - - # save images - suffix = alteration_suffix - if suffix: - save_img_path = osp.join(output_dir, img_name + suffix + '.png') - else: - save_img_path = osp.join(output_dir, img_name + '.png') - - if need_GT: - fea_loss += model.compute_fea_loss(visuals[i], data['GT'][i]) - - util.save_img(sr_img, save_img_path) - return fea_loss - + @staticmethod + def backward(ctx, *output_grads): + for i in range(len(ctx.input_tensors)): + temp = ctx.input_tensors[i] + ctx.input_tensors[i] = temp.detach() + ctx.input_tensors[i].requires_grad = True + with torch.enable_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + print("Backpropping") + input_grads = torch.autograd.grad(output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True) + return (None, None) + input_grads +from models.archs.arch_util import ConvGnSilu, UpconvBlock +import torch.nn as nn if __name__ == "__main__": - #### options - torch.backends.cudnn.benchmark = True - srg_analyze = False - parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/srgan_compute_feature.yml') - opt = option.parse(parser.parse_args().opt, is_train=False) - opt = option.dict_to_nonedict(opt) + model = nn.Sequential(ConvGnSilu(3, 64, 3, norm=False), + ConvGnSilu(64, 3, 3, norm=False) + ) + model.train() + seed = torch.randn(1,3,32,32) + recurrent = seed + outs = [] + for i in range(10): + args = (recurrent, ) + tuple(model.parameters()) + recurrent = CheckpointFunction.apply(model, 1, *args) + outs.append(recurrent) - util.mkdirs( - (path for key, path in opt['path'].items() - if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) - util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, - screen=True, tofile=True) - logger = logging.getLogger('base') - logger.info(option.dict2str(opt)) - - #### Create test dataset and dataloader - test_loaders = [] - for phase, dataset_opt in sorted(opt['datasets'].items()): - test_set = create_dataset(dataset_opt) - test_loader = create_dataloader(test_set, dataset_opt) - logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) - test_loaders.append(test_loader) - - model = create_model(opt) - fea_loss = 0 - for test_loader in test_loaders: - test_set_name = test_loader.dataset.opt['name'] - logger.info('\nTesting [{:s}]...'.format(test_set_name)) - test_start_time = time.time() - dataset_dir = osp.join(opt['path']['results_root'], test_set_name) - util.mkdir(dataset_dir) - - test_results = OrderedDict() - test_results['psnr'] = [] - test_results['ssim'] = [] - test_results['psnr_y'] = [] - test_results['ssim_y'] = [] - - tq = tqdm(test_loader) - for data in tq: - need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True - - if srg_analyze: - orig_model = model.netG - model_copy = networks.define_G(opt).to(model.device) - model_copy.load_state_dict(orig_model.state_dict()) - model.netG = model_copy - for alteration_suffix in alter_srg(model_copy): - alt_path = osp.join(dataset_dir, alteration_suffix) - img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0] - img_name = osp.splitext(osp.basename(img_path))[0] + opt['name'] - alteration_suffix += img_name - os.makedirs(alt_path, exist_ok=True) - forward_pass(model, dataset_dir, alteration_suffix) - analyze_srg(model_copy, alt_path, alteration_suffix) - # Reset model and do next alteration. - model_copy = networks.define_G(opt).to(model.device) - model_copy.load_state_dict(orig_model.state_dict()) - model.netG = model_copy - else: - fea_loss += forward_pass(model, dataset_dir, opt['name']) - - # log - logger.info('# Validation # Fea: {:.4e}'.format(fea_loss / len(test_loader))) + l = nn.L1Loss()(recurrent, torch.randn(1,3,32,32)) + l.backward() \ No newline at end of file diff --git a/codes/train.py b/codes/train.py index 2b55376d..edfb0992 100644 --- a/codes/train.py +++ b/codes/train.py @@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs): def main(): #### options parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgr_deep.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_ssgr_recursively_constrained.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args()