Config changes for discriminator advantage run

Still going from high->low, discriminator discerns on low. Next up disc works on high.
This commit is contained in:
James Betker 2020-04-25 11:24:28 -06:00
parent d95808f4ef
commit 35bd1ecae4
8 changed files with 29 additions and 110 deletions

View File

@ -5,7 +5,7 @@ import torch.nn as nn
from torch.nn.parallel import DataParallel, DistributedDataParallel
import models.networks as networks
import models.lr_scheduler as lr_scheduler
from .base_model import BaseModel
from models.base_model import BaseModel
from models.loss import GANLoss
from apex import amp
@ -150,8 +150,11 @@ class SRGANModel(BaseModel):
for p in self.netD.parameters():
p.requires_grad = False
if step > self.D_init_iters:
self.optimizer_G.zero_grad()
self.fake_H = self.netG(self.var_L)
else:
self.fake_H = self.pix
if step % 50 == 0:
for i in range(self.var_L.shape[0]):

View File

@ -22,9 +22,9 @@ class HighToLowResNet(nn.Module):
# The first will be applied against the hi-res inputs and will have only 4 layers.
# The second will be applied after half of the downscaling and will also have only 6 layers.
# The final will be applied against the final resolution and will have all of the remaining layers.
self.trunk_hires = arch_util.make_layer(basic_block, 4)
self.trunk_medres = arch_util.make_layer(basic_block, 6)
self.trunk_lores = arch_util.make_layer(basic_block2, nb - 10)
self.trunk_hires = arch_util.make_layer(basic_block, 5)
self.trunk_medres = arch_util.make_layer(basic_block, 10)
self.trunk_lores = arch_util.make_layer(basic_block2, nb - 15)
# downsampling
if self.downscale == 4:

View File

@ -23,4 +23,4 @@ network_G:
#### path
path:
pretrain_model_G: ../experiments/ESRGANx4_blacked_ramped_feat/models/35000_G.pth
pretrain_model_G: ../experiments/ESRGANx4_blacked_for_adrianna/models/19500_G.pth

View File

@ -41,9 +41,9 @@ network_D:
#### path
path:
pretrain_model_G: ../experiments/blacked_ft_G.pth
pretrain_model_D: ../experiments/blacked_ft_D.pth
resume_state: ~
pretrain_model_G: ../experiments/ESRGANx4_blacked_for_adrianna/models/15500_G.pth
pretrain_model_D: ../experiments/ESRGANx4_blacked_for_adrianna/models/15500_D.pth
resume_state: ../experiments/ESRGANx4_blacked_for_adrianna/training_state/15500.state
strict_load: true
#### training settings: learning rate scheme, loss
@ -71,7 +71,7 @@ train:
feature_weight_decay_steps: 2500
feature_weight_minimum: !!float 1e-3
gan_type: ragan # gan | ragan
gan_weight: !!float 1e-2
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 0

View File

@ -1,84 +0,0 @@
#### general settings
name: ESRGAN_adrianna_corrupt_finetune
use_tb_logger: true
model: corruptgan
distortion: downsample
scale: 4
gpu_ids: [0]
amp_opt_level: O1
#### datasets
datasets:
train:
name: blacked
mode: downsample
dataroot_GT: ../datasets/blacked/train/hr
dataroot_LQ: ../datasets/adrianna/train/lr
mismatched_Data_OK: true
use_shuffle: true
n_workers: 4 # per GPU
batch_size: 16
target_size: 64
use_flip: false
use_rot: false
color: RGB
val:
name: blacked_val
mode: downsample
target_size: 64
dataroot_GT: ../datasets/blacked/val/hr
dataroot_LQ: ../datasets/blacked/val/lr
#### network structures
network_G:
which_model_G: HighToLowResNet
in_nc: 3
out_nc: 3
nf: 128
nb: 30
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 96
#### path
path:
pretrain_model_G: ../experiments/blacked_lqprn_corrupt_G.pth
pretrain_model_D: ../experiments/blacked_lqprn_corrupt_D.pth
resume_state: ~
strict_load: true
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 1e-5
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 1e-5
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [1000, 2000, 3000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 0
gan_type: gan # gan | ragan
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 0
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2

View File

@ -1,5 +1,5 @@
#### general settings
name: ESRGAN_blacked_corrupt_lqprn
name: corruptGAN_4k_lqprn_closeup
use_tb_logger: true
model: corruptgan
distortion: downsample
@ -12,9 +12,9 @@ datasets:
train:
name: blacked
mode: downsample
dataroot_GT: ../datasets/blacked/train/hr
dataroot_LQ: ../datasets/lqprn/train/lr
mismatched_Data_OK: false
dataroot_GT: K:\\4k6k\\4k_closeup\\hr
dataroot_LQ: E:\\4k6k\\adrianna\\for_training\\lr
mismatched_Data_OK: true
use_shuffle: true
n_workers: 4 # per GPU
batch_size: 16
@ -34,12 +34,12 @@ network_G:
which_model_G: HighToLowResNet
in_nc: 3
out_nc: 3
nf: 128
nb: 30
nf: 64
nb: 64
network_D:
which_model_D: discriminator_vgg_128
in_nc: 3
nf: 96
nf: 64
#### path
path:
@ -61,7 +61,7 @@ train:
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [1000, 2000, 3500, 5000, 6500]
lr_steps: [4000, 8000, 12000, 15000, 20000]
lr_gamma: 0.5
pixel_criterion: l1
@ -71,8 +71,8 @@ train:
gan_type: gan # gan | ragan
gan_weight: !!float 1e-1
D_update_ratio: 1
D_init_iters: 0
D_update_ratio: 2
D_init_iters: 500
manual_seed: 10
val_freq: !!float 5e2

View File

@ -15,7 +15,7 @@ if __name__ == "__main__":
#### options
want_just_images = True
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='options/test/test_corrupt_vixen_adrianna.yml')
parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='options/test/test_ESRGAN_vrp.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)

View File

@ -29,7 +29,7 @@ def init_dist(backend='nccl', **kwargs):
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='options/train/finetune_corruptGAN_adrianna.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='options/train/train_GAN_blacked_corrupt.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)