forked from mrq/DL-Art-School
Remove dvae_arch_playground
This commit is contained in:
parent
a63a17e48f
commit
3c4301f085
|
@ -1,254 +0,0 @@
|
|||
import functools
|
||||
import math
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.diffusion.unet_diffusion import AttentionBlock
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def default(val, d):
|
||||
return val if val is not None else d
|
||||
|
||||
|
||||
def eval_decorator(fn):
|
||||
def inner(model, *args, **kwargs):
|
||||
was_training = model.training
|
||||
model.eval()
|
||||
out = fn(model, *args, **kwargs)
|
||||
model.train(was_training)
|
||||
return out
|
||||
return inner
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, chan, conv, activation):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x) + x
|
||||
|
||||
|
||||
class UpsampledConv(nn.Module):
|
||||
def __init__(self, conv, *args, **kwargs):
|
||||
super().__init__()
|
||||
assert 'stride' in kwargs.keys()
|
||||
self.stride = kwargs['stride']
|
||||
del kwargs['stride']
|
||||
self.conv = conv(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest')
|
||||
return self.conv(up)
|
||||
|
||||
|
||||
class AttentionDVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
positional_dims=2,
|
||||
num_tokens = 512,
|
||||
codebook_dim = 512,
|
||||
num_layers = 3,
|
||||
num_resnet_blocks = 0,
|
||||
hidden_dim = 64,
|
||||
channels = 3,
|
||||
stride = 2,
|
||||
kernel_size = 4,
|
||||
use_transposed_convs = True,
|
||||
encoder_norm = False,
|
||||
activation = 'relu',
|
||||
smooth_l1_loss = False,
|
||||
straight_through = False,
|
||||
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
||||
record_codes = False,
|
||||
):
|
||||
super().__init__()
|
||||
assert num_layers >= 1, 'number of layers must be greater than or equal to 1'
|
||||
has_resblocks = num_resnet_blocks > 0
|
||||
|
||||
self.num_tokens = num_tokens
|
||||
self.num_layers = num_layers
|
||||
self.straight_through = straight_through
|
||||
self.codebook = Quantize(codebook_dim, num_tokens)
|
||||
self.positional_dims = positional_dims
|
||||
|
||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||
if positional_dims == 2:
|
||||
conv = nn.Conv2d
|
||||
conv_transpose = nn.ConvTranspose2d
|
||||
else:
|
||||
conv = nn.Conv1d
|
||||
conv_transpose = nn.ConvTranspose1d
|
||||
if not use_transposed_convs:
|
||||
conv_transpose = functools.partial(UpsampledConv, conv)
|
||||
|
||||
if activation == 'relu':
|
||||
act = nn.ReLU
|
||||
elif activation == 'silu':
|
||||
act = nn.SiLU
|
||||
else:
|
||||
assert NotImplementedError()
|
||||
|
||||
|
||||
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
|
||||
dec_chans = list(reversed(enc_chans))
|
||||
|
||||
enc_chans = [channels, *enc_chans]
|
||||
|
||||
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
|
||||
dec_chans = [dec_init_chan, *dec_chans]
|
||||
|
||||
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
|
||||
|
||||
enc_layers = []
|
||||
dec_layers = []
|
||||
|
||||
pad = (kernel_size - 1) // 2
|
||||
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
|
||||
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad),
|
||||
act(),
|
||||
AttentionBlock(enc_out, num_heads=4)))
|
||||
if encoder_norm:
|
||||
enc_layers.append(nn.GroupNorm(8, enc_out))
|
||||
dec_layers.append(nn.Sequential(AttentionBlock(dec_in, num_heads=1),
|
||||
conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad),
|
||||
act()))
|
||||
|
||||
for _ in range(num_resnet_blocks):
|
||||
dec_layers.insert(0, AttentionBlock(dec_chans[1], num_heads=4))
|
||||
enc_layers.append(AttentionBlock(enc_chans[-1], num_heads=4))
|
||||
|
||||
if num_resnet_blocks > 0:
|
||||
dec_layers.insert(0, conv(codebook_dim, dec_chans[1], 1))
|
||||
|
||||
enc_layers.append(conv(enc_chans[-1], codebook_dim, 1))
|
||||
dec_layers.append(conv(dec_chans[-1], channels, 1))
|
||||
|
||||
self.encoder = nn.Sequential(*enc_layers)
|
||||
self.decoder = nn.Sequential(*dec_layers)
|
||||
|
||||
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
|
||||
|
||||
# take care of normalization within class
|
||||
self.normalization = normalization
|
||||
self.record_codes = record_codes
|
||||
if record_codes:
|
||||
self.codes = torch.zeros((1228800,), dtype=torch.long)
|
||||
self.code_ind = 0
|
||||
self.internal_step = 0
|
||||
|
||||
def norm(self, images):
|
||||
if not self.normalization is not None:
|
||||
return images
|
||||
|
||||
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
|
||||
arrange = 'c -> () c () ()' if self.positional_dims == 2 else 'c -> () c ()'
|
||||
means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
|
||||
images = images.clone()
|
||||
images.sub_(means).div_(stds)
|
||||
return images
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.record_codes:
|
||||
# Report annealing schedule
|
||||
return {'histogram_codes': self.codes}
|
||||
else:
|
||||
return {}
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def get_codebook_indices(self, images):
|
||||
img = self.norm(images)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return codes
|
||||
|
||||
def decode(
|
||||
self,
|
||||
img_seq
|
||||
):
|
||||
image_embeds = self.codebook.embed_code(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
kwargs = {}
|
||||
if self.positional_dims == 1:
|
||||
arrange = 'b n d -> b d n'
|
||||
else:
|
||||
h = w = int(sqrt(n))
|
||||
arrange = 'b (h w) d -> b d h w'
|
||||
kwargs = {'h': h, 'w': w}
|
||||
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
||||
images = self.decoder(image_embeds)
|
||||
return images
|
||||
|
||||
def infer(self, img):
|
||||
img = self.norm(img)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return self.decode(codes)
|
||||
|
||||
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
||||
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
||||
# more lossy (but useful for determining network performance).
|
||||
def forward(
|
||||
self,
|
||||
img
|
||||
):
|
||||
img = self.norm(img)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
||||
|
||||
if self.training:
|
||||
out = sampled
|
||||
for d in self.decoder:
|
||||
out = d(out)
|
||||
else:
|
||||
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
||||
out = self.decode(codes)
|
||||
|
||||
# reconstruction loss
|
||||
recon_loss = self.loss_fn(img, out, reduction='none')
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
self.code_ind = self.code_ind + l
|
||||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
self.internal_step += 1
|
||||
|
||||
return recon_loss, commitment_loss, out
|
||||
|
||||
|
||||
@register_model
|
||||
def register_attention_dvae(opt_net, opt):
|
||||
return AttentionDVAE(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#v = DiscreteVAE()
|
||||
#o=v(torch.randn(1,3,256,256))
|
||||
#print(o.shape)
|
||||
v = AttentionDVAE(channels=80, normalization=None, positional_dims=1, num_tokens=4096, codebook_dim=4096,
|
||||
hidden_dim=256, stride=2, num_resnet_blocks=2, kernel_size=3, num_layers=2, use_transposed_convs=False)
|
||||
#v.eval()
|
||||
o=v(torch.randn(1,80,256))
|
||||
print(o[-1].shape)
|
|
@ -1,56 +0,0 @@
|
|||
import random
|
||||
from math import prod
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
|
||||
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
||||
# values with the specified expected variance.
|
||||
class DiscretizationLoss(nn.Module):
|
||||
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
||||
super().__init__()
|
||||
self.discrete_bins = discrete_bins
|
||||
self.dim = dim
|
||||
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
||||
if store_past > 0:
|
||||
self.record_past = True
|
||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
||||
else:
|
||||
self.record_past = False
|
||||
|
||||
def forward(self, x):
|
||||
other_dims = set(range(len(x.shape)))-set([self.dim])
|
||||
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
||||
averaged = averaged - averaged.mean()
|
||||
|
||||
if self.record_past:
|
||||
acc_count = self.accumulator.shape[0]
|
||||
avg = averaged.detach().clone()
|
||||
if self.accumulator_filled > 0:
|
||||
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
|
||||
averaged / acc_count
|
||||
|
||||
# Also push averaged into the accumulator.
|
||||
self.accumulator[self.accumulator_index] = avg
|
||||
self.accumulator_index += 1
|
||||
if self.accumulator_index >= acc_count:
|
||||
self.accumulator_index *= 0
|
||||
if self.accumulator_filled <= 0:
|
||||
self.accumulator_filled += 1
|
||||
|
||||
return torch.sum(-self.dist.log_prob(averaged))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
d = DiscretizationLoss(1024, 1, 1e-6, store_past=20)
|
||||
for _ in range(500):
|
||||
v = torch.randn(16, 1024, 500)
|
||||
#for k in range(5):
|
||||
# v[:, random.randint(0,8192), :] += random.random()*100
|
||||
v = F.softmax(v, 1)
|
||||
print(d(v))
|
|
@ -1,363 +0,0 @@
|
|||
import functools
|
||||
import math
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.diffusion.unet_diffusion import AttentionBlock
|
||||
from models.gpt_voice.lucidrains_dvae import DiscreteVAE
|
||||
from models.stylegan.stylegan2_rosinality import EqualLinear
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def default(val, d):
|
||||
return val if val is not None else d
|
||||
|
||||
|
||||
def eval_decorator(fn):
|
||||
def inner(model, *args, **kwargs):
|
||||
was_training = model.training
|
||||
model.eval()
|
||||
out = fn(model, *args, **kwargs)
|
||||
model.train(was_training)
|
||||
return out
|
||||
return inner
|
||||
|
||||
|
||||
class ModulatedConv1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channel,
|
||||
out_channel,
|
||||
kernel_size,
|
||||
style_dim,
|
||||
demodulate=True,
|
||||
initial_weight_factor=1,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.eps = 1e-8
|
||||
self.kernel_size = kernel_size
|
||||
self.in_channel = in_channel
|
||||
self.out_channel = out_channel
|
||||
|
||||
fan_in = in_channel * kernel_size ** 2
|
||||
self.scale = initial_weight_factor / math.sqrt(fan_in)
|
||||
self.padding = kernel_size // 2
|
||||
|
||||
self.weight = nn.Parameter(
|
||||
torch.randn(1, out_channel, in_channel, kernel_size)
|
||||
)
|
||||
|
||||
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
||||
|
||||
self.demodulate = demodulate
|
||||
|
||||
def forward(self, input, style):
|
||||
batch, in_channel, d = input.shape
|
||||
|
||||
style = self.modulation(style).view(batch, 1, in_channel, 1)
|
||||
weight = self.scale * self.weight * style
|
||||
|
||||
if self.demodulate:
|
||||
demod = torch.rsqrt(weight.pow(2).sum([2, 3]) + 1e-8)
|
||||
weight = weight * demod.view(batch, self.out_channel, 1, 1)
|
||||
|
||||
weight = weight.view(
|
||||
batch * self.out_channel, in_channel, self.kernel_size
|
||||
)
|
||||
|
||||
input = input.view(1, batch * in_channel, d)
|
||||
out = F.conv1d(input, weight, padding=self.padding, groups=batch)
|
||||
_, _, d = out.shape
|
||||
out = out.view(batch, self.out_channel, d)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ChannelAttentionModule(nn.Module):
|
||||
def __init__(self, channels_in, channels_out, attention_dim, layers, num_heads=1):
|
||||
super().__init__()
|
||||
self.channels_in = channels_in
|
||||
self.channels_out = channels_out
|
||||
|
||||
# This is the bypass. It performs the same computation, without attention. It is responsible for stabilizing
|
||||
# training early on by being more optimizable.
|
||||
self.bypass = nn.Conv1d(channels_in, channels_out, kernel_size=1)
|
||||
|
||||
self.positional_embeddings = nn.Embedding(channels_out, attention_dim)
|
||||
self.first_layer = ModulatedConv1d(1, attention_dim, kernel_size=1, style_dim=channels_in, initial_weight_factor=.1)
|
||||
self.layers = nn.Sequential(*[AttentionBlock(attention_dim, num_heads=num_heads) for _ in range(layers)])
|
||||
self.post_attn_layer = nn.Conv1d(attention_dim, 1, kernel_size=1)
|
||||
|
||||
def forward(self, inp):
|
||||
bypass = self.bypass(inp)
|
||||
emb = self.positional_embeddings(torch.arange(0, self.channels_out, device=inp.device)).permute(1,0).unsqueeze(0)
|
||||
|
||||
b, c, w = bypass.shape
|
||||
# Reshape bypass so channels become structure and structure becomes part of the batch.
|
||||
x = bypass.permute(0,2,1).reshape(b*w, c).unsqueeze(1)
|
||||
# Reshape the input as well so it can be fed into the stylizer.
|
||||
style = inp.permute(0,2,1).reshape(b*w, self.channels_in)
|
||||
x = self.first_layer(x, style)
|
||||
x = emb + x
|
||||
x = self.layers(x)
|
||||
x = x - emb # Subtract of emb to further stabilize early training, where the attention layers do nothing.
|
||||
out = self.post_attn_layer(x).squeeze(1)
|
||||
out = out.view(b,w,self.channels_out).permute(0,2,1)
|
||||
|
||||
return bypass + out
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, chan, conv, activation):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x) + x
|
||||
|
||||
|
||||
class UpsampledConv(nn.Module):
|
||||
def __init__(self, conv, *args, **kwargs):
|
||||
super().__init__()
|
||||
assert 'stride' in kwargs.keys()
|
||||
self.stride = kwargs['stride']
|
||||
del kwargs['stride']
|
||||
self.conv = conv(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest')
|
||||
return self.conv(up)
|
||||
|
||||
|
||||
class ChannelAttentionDVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
positional_dims=2,
|
||||
num_tokens = 512,
|
||||
codebook_dim = 512,
|
||||
num_layers = 3,
|
||||
num_resnet_blocks = 0,
|
||||
hidden_dim = 64,
|
||||
channel_attention_dim = 64,
|
||||
channels = 3,
|
||||
stride = 2,
|
||||
kernel_size = 4,
|
||||
use_transposed_convs = True,
|
||||
encoder_norm = False,
|
||||
activation = 'relu',
|
||||
smooth_l1_loss = False,
|
||||
straight_through = False,
|
||||
normalization = None, # ((0.5,) * 3, (0.5,) * 3),
|
||||
record_codes = False,
|
||||
):
|
||||
super().__init__()
|
||||
assert num_layers >= 1, 'number of layers must be greater than or equal to 1'
|
||||
has_resblocks = num_resnet_blocks > 0
|
||||
|
||||
self.num_tokens = num_tokens
|
||||
self.num_layers = num_layers
|
||||
self.straight_through = straight_through
|
||||
self.codebook = Quantize(codebook_dim, num_tokens)
|
||||
self.positional_dims = positional_dims
|
||||
|
||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||
if positional_dims == 2:
|
||||
conv = nn.Conv2d
|
||||
conv_transpose = nn.ConvTranspose2d
|
||||
else:
|
||||
conv = nn.Conv1d
|
||||
conv_transpose = nn.ConvTranspose1d
|
||||
if not use_transposed_convs:
|
||||
conv_transpose = functools.partial(UpsampledConv, conv)
|
||||
|
||||
if activation == 'relu':
|
||||
act = nn.ReLU
|
||||
elif activation == 'silu':
|
||||
act = nn.SiLU
|
||||
else:
|
||||
assert NotImplementedError()
|
||||
|
||||
|
||||
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
|
||||
dec_chans = list(reversed(enc_chans))
|
||||
|
||||
enc_chans = [channels, *enc_chans]
|
||||
|
||||
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
|
||||
dec_chans = [dec_init_chan, *dec_chans]
|
||||
|
||||
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
|
||||
|
||||
enc_layers = []
|
||||
dec_layers = []
|
||||
|
||||
pad = (kernel_size - 1) // 2
|
||||
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
|
||||
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad), act()))
|
||||
if encoder_norm:
|
||||
enc_layers.append(nn.GroupNorm(8, enc_out))
|
||||
dec_layers.append(nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad), act()))
|
||||
|
||||
for _ in range(num_resnet_blocks):
|
||||
dec_layers.insert(0, ResBlock(dec_chans[1], conv, act))
|
||||
enc_layers.append(ResBlock(enc_chans[-1], conv, act))
|
||||
|
||||
if num_resnet_blocks > 0:
|
||||
dec_layers.insert(0, conv(codebook_dim, dec_chans[1], 1))
|
||||
|
||||
enc_layers.append(conv(enc_chans[-1], codebook_dim, 1))
|
||||
dec_layers.append(ChannelAttentionModule(dec_chans[-1], channels, channel_attention_dim, layers=3, num_heads=1))
|
||||
|
||||
self.encoder = nn.Sequential(*enc_layers)
|
||||
self.decoder = nn.Sequential(*dec_layers)
|
||||
|
||||
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
|
||||
|
||||
# take care of normalization within class
|
||||
self.normalization = normalization
|
||||
self.record_codes = record_codes
|
||||
if record_codes:
|
||||
self.codes = torch.zeros((1228800,), dtype=torch.long)
|
||||
self.code_ind = 0
|
||||
self.internal_step = 0
|
||||
|
||||
def norm(self, images):
|
||||
if not self.normalization is not None:
|
||||
return images
|
||||
|
||||
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
|
||||
arrange = 'c -> () c () ()' if self.positional_dims == 2 else 'c -> () c ()'
|
||||
means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
|
||||
images = images.clone()
|
||||
images.sub_(means).div_(stds)
|
||||
return images
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
dbg = {}
|
||||
if self.record_codes:
|
||||
# Report annealing schedule
|
||||
dbg.update({'histogram_codes': self.codes})
|
||||
return dbg
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def get_codebook_indices(self, images):
|
||||
img = self.norm(images)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return codes
|
||||
|
||||
def decode(
|
||||
self,
|
||||
img_seq
|
||||
):
|
||||
image_embeds = self.codebook.embed_code(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
kwargs = {}
|
||||
if self.positional_dims == 1:
|
||||
arrange = 'b n d -> b d n'
|
||||
else:
|
||||
h = w = int(sqrt(n))
|
||||
arrange = 'b (h w) d -> b d h w'
|
||||
kwargs = {'h': h, 'w': w}
|
||||
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
||||
images = self.decoder(image_embeds)
|
||||
return images
|
||||
|
||||
def infer(self, img):
|
||||
img = self.norm(img)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
return self.decode(codes)
|
||||
|
||||
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
||||
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
||||
# more lossy (but useful for determining network performance).
|
||||
def forward(
|
||||
self,
|
||||
img
|
||||
):
|
||||
img = self.norm(img)
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, commitment_loss, codes = self.codebook(logits)
|
||||
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
||||
|
||||
if self.training:
|
||||
out = sampled
|
||||
for d in self.decoder:
|
||||
out = d(out)
|
||||
else:
|
||||
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
||||
out = self.decode(codes)
|
||||
|
||||
# reconstruction loss
|
||||
recon_loss = self.loss_fn(img, out, reduction='none')
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
self.code_ind = self.code_ind + l
|
||||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
self.internal_step += 1
|
||||
|
||||
return recon_loss, commitment_loss, out
|
||||
|
||||
|
||||
|
||||
def convert_from_dvae(dvae_state_dict_file):
|
||||
params = {
|
||||
'channels': 80,
|
||||
'positional_dims': 1,
|
||||
'num_tokens': 8192,
|
||||
'codebook_dim': 2048,
|
||||
'hidden_dim': 512,
|
||||
'stride': 2,
|
||||
'num_resnet_blocks': 3,
|
||||
'num_layers': 2,
|
||||
'record_codes': True,
|
||||
}
|
||||
dvae = DiscreteVAE(**params)
|
||||
dvae.load_state_dict(torch.load(dvae_state_dict_file), strict=True)
|
||||
cdvae = ChannelAttentionDVAE(channel_attention_dim=256, **params)
|
||||
mk, uk = cdvae.load_state_dict(dvae.state_dict(), strict=False)
|
||||
for k in mk:
|
||||
assert 'decoder.6' in k
|
||||
for k in uk:
|
||||
assert 'decoder.6' in k
|
||||
cdvae.decoder[-1].bypass.load_state_dict(dvae.decoder[-1].state_dict())
|
||||
torch.save(cdvae.state_dict(), 'converted_cdvae.pth')
|
||||
|
||||
|
||||
@register_model
|
||||
def register_dvae_channel_attention(opt_net, opt):
|
||||
return ChannelAttentionDVAE(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
convert_from_dvae('D:\\dlas\\experiments\\train_dvae_clips\\models\\20000_generator.pth')
|
||||
'''
|
||||
v = ChannelAttentionDVAE(channels=80, normalization=None, positional_dims=1, num_tokens=4096, codebook_dim=4096,
|
||||
hidden_dim=256, stride=2, num_resnet_blocks=2, kernel_size=3, num_layers=2, use_transposed_convs=False)
|
||||
o=v(torch.randn(1,80,256))
|
||||
print(v.get_debug_values(0, 0))
|
||||
print(o[-1].shape)
|
||||
'''
|
|
@ -9,7 +9,6 @@ from einops import rearrange
|
|||
from torch import einsum
|
||||
from vector_quantize_pytorch import VectorQuantize
|
||||
|
||||
from models.gpt_voice.dvae_arch_playground.discretization_loss import DiscretizationLoss
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
@ -29,6 +28,46 @@ def eval_decorator(fn):
|
|||
return inner
|
||||
|
||||
|
||||
# Fits a soft-discretized input to a normal-PDF across the specified dimension.
|
||||
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
|
||||
# values with the specified expected variance.
|
||||
class DiscretizationLoss(nn.Module):
|
||||
def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
|
||||
super().__init__()
|
||||
self.discrete_bins = discrete_bins
|
||||
self.dim = dim
|
||||
self.dist = torch.distributions.Normal(0, scale=expected_variance)
|
||||
if store_past > 0:
|
||||
self.record_past = True
|
||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
|
||||
else:
|
||||
self.record_past = False
|
||||
|
||||
def forward(self, x):
|
||||
other_dims = set(range(len(x.shape)))-set([self.dim])
|
||||
averaged = x.sum(dim=tuple(other_dims)) / x.sum()
|
||||
averaged = averaged - averaged.mean()
|
||||
|
||||
if self.record_past:
|
||||
acc_count = self.accumulator.shape[0]
|
||||
avg = averaged.detach().clone()
|
||||
if self.accumulator_filled > 0:
|
||||
averaged = torch.mean(self.accumulator, dim=0) * (acc_count-1) / acc_count + \
|
||||
averaged / acc_count
|
||||
|
||||
# Also push averaged into the accumulator.
|
||||
self.accumulator[self.accumulator_index] = avg
|
||||
self.accumulator_index += 1
|
||||
if self.accumulator_index >= acc_count:
|
||||
self.accumulator_index *= 0
|
||||
if self.accumulator_filled <= 0:
|
||||
self.accumulator_filled += 1
|
||||
|
||||
return torch.sum(-self.dist.log_prob(averaged))
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, chan, conv, activation):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue
Block a user