forked from mrq/DL-Art-School
Restore old MDF functionality for cheater gen
This commit is contained in:
parent
694400a45b
commit
5138d61767
|
@ -223,36 +223,23 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
|
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
|
||||||
|
|
||||||
# 1. Generate the cheater latent using the input as a reference.
|
# 1. Generate the cheater latent using the input as a reference.
|
||||||
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True,
|
gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater})
|
||||||
model_kwargs={'conditioning_input': cheater},
|
|
||||||
causal=self.causal, causal_slope=self.causal_slope)
|
|
||||||
|
|
||||||
# 2. Decode the cheater into a MEL. This operation and the next need to be chunked to make them feasible to perform within GPU memory.
|
# 2. Decode the cheater into a MEL
|
||||||
chunks = torch.split(gen_cheater, 64, dim=-1)
|
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||||
gen_mels = []
|
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
||||||
gen_wavs = []
|
|
||||||
for chunk in tqdm(chunks):
|
|
||||||
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,chunk.shape[-1]*16), progress=True,
|
|
||||||
model_kwargs={'codes': chunk.permute(0,2,1)})
|
|
||||||
gen_mels.append(gen_mel)
|
|
||||||
|
|
||||||
# 3. And then the MEL back into a spectrogram
|
# 3. And then the MEL back into a spectrogram
|
||||||
output_shape = (1,16,audio.shape[-1]//(16*len(chunks)))
|
output_shape = (1,16,audio.shape[-1]//16)
|
||||||
self.spec_decoder = self.spec_decoder.to(audio.device)
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
model_kwargs={'codes': gen_mel_denorm})
|
model_kwargs={'codes': gen_mel_denorm})
|
||||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
gen_wavs.append(gen_wav)
|
|
||||||
gen_mel = torch.cat(gen_mels, dim=-1)
|
|
||||||
gen_wav = torch.cat(gen_wavs, dim=-1)
|
|
||||||
|
|
||||||
if audio.shape[-1] < 40 * 22050:
|
|
||||||
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
|
||||||
model_kwargs={'codes': mel})
|
model_kwargs={'codes': mel})
|
||||||
real_wav = pixel_shuffle_1d(real_wav, 16)
|
real_wav = pixel_shuffle_1d(real_wav, 16)
|
||||||
else:
|
|
||||||
real_wav = audio # TODO: chunk like above.
|
|
||||||
|
|
||||||
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
@ -432,18 +419,18 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_r8.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_v5\\train.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_causal\\models\\1000_generator.pth'
|
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\206000_generator_ema.pth'
|
||||||
).cuda()
|
).cuda()
|
||||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||||
'diffusion_steps': 64,
|
'diffusion_steps': 64,
|
||||||
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
||||||
'causal': True, 'causal_slope': 4,
|
#'causal': True, 'causal_slope': 4,
|
||||||
#'partial_low': 128, 'partial_high': 192
|
#'partial_low': 128, 'partial_high': 192
|
||||||
}
|
}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 232, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 235, 'device': 'cuda', 'opt': {}}
|
||||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
Loading…
Reference in New Issue
Block a user