forked from mrq/DL-Art-School
Add support for multiple LQ paths
I want to be able to specify many different transformations onto the target data; the model should handle them all. Do this by allowing multiple LQ paths to be selected and the dataset class selects one at random.
This commit is contained in:
parent
3cd85f8073
commit
5c1832e124
|
@ -13,6 +13,10 @@ class LQGTDataset(data.Dataset):
|
|||
If only GT images are provided, generate LQ images on-the-fly.
|
||||
"""
|
||||
|
||||
def get_lq_path(self, i):
|
||||
which_lq = random.randint(0, len(self.paths_LQ))
|
||||
return self.paths_LQ[which_lq][i]
|
||||
|
||||
def __init__(self, opt):
|
||||
super(LQGTDataset, self).__init__()
|
||||
self.opt = opt
|
||||
|
@ -23,17 +27,26 @@ class LQGTDataset(data.Dataset):
|
|||
self.LQ_env, self.GT_env, self.PIX_env = None, None, None # environments for lmdbs
|
||||
|
||||
self.paths_GT, self.sizes_GT = util.get_image_paths(self.data_type, opt['dataroot_GT'])
|
||||
self.paths_LQ, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
|
||||
self.paths_LQ = []
|
||||
if isinstance(opt['dataroot_LQ'], list):
|
||||
# Multiple LQ data sources can be given, in case there are multiple ways of corrupting a source image and
|
||||
# we want the model to learn them all.
|
||||
for dr_lq in opt['dataroot_LQ']:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, dr_lq)
|
||||
self.paths_LQ.append(lq_path)
|
||||
else:
|
||||
lq_path, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ'])
|
||||
self.paths_LQ.append(lq_path)
|
||||
self.doCrop = opt['doCrop']
|
||||
if 'dataroot_PIX' in opt.keys():
|
||||
self.paths_PIX, self.sizes_PIX = util.get_image_paths(self.data_type, opt['dataroot_PIX'])
|
||||
|
||||
assert self.paths_GT, 'Error: GT path is empty.'
|
||||
if self.paths_LQ and self.paths_GT:
|
||||
assert len(self.paths_LQ) == len(
|
||||
assert len(self.paths_LQ[0]) == len(
|
||||
self.paths_GT
|
||||
), 'GT and LQ datasets have different number of images - {}, {}.'.format(
|
||||
len(self.paths_LQ), len(self.paths_GT))
|
||||
len(self.paths_LQ[0]), len(self.paths_GT))
|
||||
self.random_scale_list = [1]
|
||||
|
||||
def _init_lmdb(self):
|
||||
|
@ -74,7 +87,7 @@ class LQGTDataset(data.Dataset):
|
|||
|
||||
# get LQ image
|
||||
if self.paths_LQ:
|
||||
LQ_path = self.paths_LQ[index]
|
||||
LQ_path = self.get_lq_path(index)
|
||||
resolution = [int(s) for s in self.sizes_LQ[index].split('_')
|
||||
] if self.data_type == 'lmdb' else None
|
||||
img_LQ = util.read_img(self.LQ_env, LQ_path, resolution)
|
||||
|
|
Loading…
Reference in New Issue
Block a user