forked from mrq/DL-Art-School
Constrain wav_aug a bit more
This commit is contained in:
parent
f126040da2
commit
62c7570512
|
@ -23,7 +23,9 @@ class WavAugmentor:
|
|||
pass
|
||||
|
||||
def augment(self, wav, sample_rate):
|
||||
speed_effect = ['speed', rdstr(.7, 1)]
|
||||
speed_effect = ['speed', rdstr(.8, 1)]
|
||||
'''
|
||||
Band effects are disabled until I can audit them better.
|
||||
band_effects = [
|
||||
['reverb', '-w'],
|
||||
['reverb'],
|
||||
|
@ -39,15 +41,16 @@ class WavAugmentor:
|
|||
['sinc', '3k-4k']
|
||||
]
|
||||
band_effect = random.choice(band_effects)
|
||||
'''
|
||||
volume_effects = [
|
||||
['loudness', rdi(10,-2)],
|
||||
['overdrive', rdi(20,0), rdi(20,0)],
|
||||
]
|
||||
vol_effect = random.choice(volume_effects)
|
||||
effects = [speed_effect, band_effect, vol_effect]
|
||||
effects = [speed_effect, vol_effect]
|
||||
out, sr = torchaudio.sox_effects.apply_effects_tensor(wav, sample_rate, effects)
|
||||
# Add a variable amount of noise
|
||||
out = out + torch.rand_like(out) * random.random() * .05
|
||||
out = out + torch.rand_like(out) * random.random() * .03
|
||||
return out
|
||||
|
||||
|
||||
|
|
|
@ -51,7 +51,7 @@ if __name__ == "__main__":
|
|||
torch.backends.cudnn.benchmark = True
|
||||
want_metrics = False
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_vqvae_audio_lj.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_gpt_tts_lj.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
utils.util.loaded_options = opt
|
||||
|
|
|
@ -20,12 +20,13 @@ if __name__ == '__main__':
|
|||
clip = clip[:,0]
|
||||
clip = clip[:window].unsqueeze(0)
|
||||
clip = clip / 32768.0 # Normalize
|
||||
clip = clip + torch.rand_like(clip) * .03 # Noise (this is how the model was trained)
|
||||
assert sr == 24000
|
||||
clips.append(clip)
|
||||
clips = torch.stack(clips, dim=0)
|
||||
|
||||
resnet = resnet34()
|
||||
sd = torch.load('../experiments/train_byol_audio_clips/models/66000_generator.pth')
|
||||
sd = torch.load('../experiments/train_byol_audio_clips/models/57000_generator.pth')
|
||||
sd = extract_byol_model_from_state_dict(sd)
|
||||
resnet.load_state_dict(sd)
|
||||
embedding = resnet(clips, return_pool=True)
|
||||
|
|
Loading…
Reference in New Issue
Block a user