diff --git a/codes/models/diffusion/fp16_util.py b/codes/models/diffusion/fp16_util.py new file mode 100644 index 00000000..9033a09f --- /dev/null +++ b/codes/models/diffusion/fp16_util.py @@ -0,0 +1,226 @@ +""" +Helpers to train with 16-bit precision. +""" + +import numpy as np +import torch as th +import torch.nn as nn +from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors + +INITIAL_LOG_LOSS_SCALE = 20.0 + + +def convert_module_to_f16(l): + """ + Convert primitive modules to float16. + """ + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + +def convert_module_to_f32(l): + """ + Convert primitive modules to float32, undoing convert_module_to_f16(). + """ + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): + l.weight.data = l.weight.data.float() + if l.bias is not None: + l.bias.data = l.bias.data.float() + + +def make_master_params(param_groups_and_shapes): + """ + Copy model parameters into a (differently-shaped) list of full-precision + parameters. + """ + master_params = [] + for param_group, shape in param_groups_and_shapes: + master_param = nn.Parameter( + _flatten_dense_tensors( + [param.detach().float() for (_, param) in param_group] + ).view(shape) + ) + master_param.requires_grad = True + master_params.append(master_param) + return master_params + + +def model_grads_to_master_grads(param_groups_and_shapes, master_params): + """ + Copy the gradients from the model parameters into the master parameters + from make_master_params(). + """ + for master_param, (param_group, shape) in zip( + master_params, param_groups_and_shapes + ): + master_param.grad = _flatten_dense_tensors( + [param_grad_or_zeros(param) for (_, param) in param_group] + ).view(shape) + + +def master_params_to_model_params(param_groups_and_shapes, master_params): + """ + Copy the master parameter data back into the model parameters. + """ + # Without copying to a list, if a generator is passed, this will + # silently not copy any parameters. + for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): + for (_, param), unflat_master_param in zip( + param_group, unflatten_master_params(param_group, master_param.view(-1)) + ): + param.detach().copy_(unflat_master_param) + + +def unflatten_master_params(param_group, master_param): + return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) + + +def get_param_groups_and_shapes(named_model_params): + named_model_params = list(named_model_params) + scalar_vector_named_params = ( + [(n, p) for (n, p) in named_model_params if p.ndim <= 1], + (-1), + ) + matrix_named_params = ( + [(n, p) for (n, p) in named_model_params if p.ndim > 1], + (1, -1), + ) + return [scalar_vector_named_params, matrix_named_params] + + +def master_params_to_state_dict( + model, param_groups_and_shapes, master_params, use_fp16 +): + if use_fp16: + state_dict = model.state_dict() + for master_param, (param_group, _) in zip( + master_params, param_groups_and_shapes + ): + for (name, _), unflat_master_param in zip( + param_group, unflatten_master_params(param_group, master_param.view(-1)) + ): + assert name in state_dict + state_dict[name] = unflat_master_param + else: + state_dict = model.state_dict() + for i, (name, _value) in enumerate(model.named_parameters()): + assert name in state_dict + state_dict[name] = master_params[i] + return state_dict + + +def state_dict_to_master_params(model, state_dict, use_fp16): + if use_fp16: + named_model_params = [ + (name, state_dict[name]) for name, _ in model.named_parameters() + ] + param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) + master_params = make_master_params(param_groups_and_shapes) + else: + master_params = [state_dict[name] for name, _ in model.named_parameters()] + return master_params + + +def zero_master_grads(master_params): + for param in master_params: + param.grad = None + + +def zero_grad(model_params): + for param in model_params: + # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group + if param.grad is not None: + param.grad.detach_() + param.grad.zero_() + + +def param_grad_or_zeros(param): + if param.grad is not None: + return param.grad.data.detach() + else: + return th.zeros_like(param) + + +class MixedPrecisionTrainer: + def __init__( + self, + *, + model, + use_fp16=False, + fp16_scale_growth=1e-3, + initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, + ): + self.model = model + self.use_fp16 = use_fp16 + self.fp16_scale_growth = fp16_scale_growth + + self.model_params = list(self.model.parameters()) + self.master_params = self.model_params + self.param_groups_and_shapes = None + self.lg_loss_scale = initial_lg_loss_scale + + if self.use_fp16: + self.param_groups_and_shapes = get_param_groups_and_shapes( + self.model.named_parameters() + ) + self.master_params = make_master_params(self.param_groups_and_shapes) + self.model.convert_to_fp16() + + def zero_grad(self): + zero_grad(self.model_params) + + def backward(self, loss: th.Tensor): + if self.use_fp16: + loss_scale = 2 ** self.lg_loss_scale + (loss * loss_scale).backward() + else: + loss.backward() + + def optimize(self, opt: th.optim.Optimizer): + if self.use_fp16: + return self._optimize_fp16(opt) + else: + return self._optimize_normal(opt) + + def _optimize_fp16(self, opt: th.optim.Optimizer): + model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) + grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale) + if check_overflow(grad_norm): + self.lg_loss_scale -= 1 + zero_master_grads(self.master_params) + return False + + opt.step(grad_scale=2.0 ** self.lg_loss_scale) + zero_master_grads(self.master_params) + master_params_to_model_params(self.param_groups_and_shapes, self.master_params) + self.lg_loss_scale += self.fp16_scale_growth + return True + + def _optimize_normal(self, opt: th.optim.Optimizer): + grad_norm, param_norm = self._compute_norms() + opt.step() + return True + + def _compute_norms(self, grad_scale=1.0): + grad_norm = 0.0 + param_norm = 0.0 + for p in self.master_params: + with th.no_grad(): + param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 + if p.grad is not None: + grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 + return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) + + def master_params_to_state_dict(self, master_params): + return master_params_to_state_dict( + self.model, self.param_groups_and_shapes, master_params, self.use_fp16 + ) + + def state_dict_to_master_params(self, state_dict): + return state_dict_to_master_params(self.model, state_dict, self.use_fp16) + + +def check_overflow(value): + return (value == float("inf")) or (value == -float("inf")) or (value != value) diff --git a/codes/models/diffusion/unet_diffusion.py b/codes/models/diffusion/unet_diffusion.py new file mode 100644 index 00000000..f58219b3 --- /dev/null +++ b/codes/models/diffusion/unet_diffusion.py @@ -0,0 +1,897 @@ +from abc import abstractmethod + +import math + +import numpy as np +import torch +import torch as th +import torch.nn as nn +import torch.nn.functional as F +import torchvision # For debugging, not actually used. + +from models.diffusion.fp16_util import convert_module_to_f16, convert_module_to_f32 +from models.diffusion.nn import ( + conv_nd, + linear, + avg_pool_nd, + zero_module, + normalization, + timestep_embedding, +) +from trainer.networks import register_model +from utils.util import checkpoint + + +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter( + th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5 + ) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1) # NC(HW) + x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=1 + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, x, emb + ) + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = th.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + if use_new_attention_order: + # split qkv before split heads + self.attention = QKVAttention(self.num_heads) + else: + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + return checkpoint(self._forward, x) + + def _forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial ** 2) * c + model.total_ops += th.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + if self.num_classes is not None: + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + num_heads=num_heads_upsample, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, timesteps, y=None): + """ + Apply the model to an input batch. + + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + + hs = [] + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + if self.num_classes is not None: + assert y.shape == (x.shape[0],) + emb = emb + self.label_emb(y) + + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + hs.append(h) + h = self.middle_block(h, emb) + for module in self.output_blocks: + h = th.cat([h, hs.pop()], dim=1) + h = module(h, emb) + h = h.type(x.dtype) + return self.out(h) + + +class SuperResModel(UNetModel): + """ + A UNetModel that performs super-resolution. + + Expects an extra kwarg `low_res` to condition on a low-resolution image. + """ + + def __init__(self, image_size, in_channels, *args, **kwargs): + super().__init__(image_size, in_channels * 2, *args, **kwargs) + + def forward(self, x, timesteps, low_res=None, **kwargs): + _, _, new_height, new_width = x.shape + upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") + x = th.cat([x, upsampled], dim=1) + res = super().forward(x, timesteps, **kwargs) + return res + + +class EncoderUNetModel(nn.Module): + """ + The half UNet model with attention and timestep embedding. + + For usage, see UNet. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + pool="adaptive", + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + self.pool = pool + if pool == "adaptive": + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + nn.AdaptiveAvgPool2d((1, 1)), + zero_module(conv_nd(dims, ch, out_channels, 1)), + nn.Flatten(), + ) + elif pool == "attention": + assert num_head_channels != -1 + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + AttentionPool2d( + (image_size // ds), ch, num_head_channels, out_channels + ), + ) + elif pool == "spatial": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + nn.ReLU(), + nn.Linear(2048, self.out_channels), + ) + elif pool == "spatial_v2": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + normalization(2048), + nn.SiLU(), + nn.Linear(2048, self.out_channels), + ) + else: + raise NotImplementedError(f"Unexpected {pool} pooling") + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + + def forward(self, x, timesteps): + """ + Apply the model to an input batch. + + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :return: an [N x K] Tensor of outputs. + """ + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + results = [] + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = self.middle_block(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = th.cat(results, axis=-1) + return self.out(h) + else: + h = h.type(x.dtype) + return self.out(h) + +@register_model +def register_unet_diffusion(opt_net, opt): + return SuperResModel(**opt_net['args']) + +if __name__ == '__main__': + attention_ds = [] + for res in "16,8".split(","): + attention_ds.append(128 // int(res)) + srm = SuperResModel(image_size=128, in_channels=3, model_channels=64, out_channels=3, num_res_blocks=1, attention_resolutions=attention_ds, num_heads=4, + num_heads_upsample=-1, use_scale_shift_norm=True) + x = torch.randn(1,3,128,128) + l = torch.randn(1,3,32,32) + ts = torch.LongTensor([555]) + y = srm(x, ts, low_res=l) + print(y.shape, y.mean(), y.std(), y.min(), y.max()) diff --git a/codes/train.py b/codes/train.py index 6c55bb10..35efdd85 100644 --- a/codes/train.py +++ b/codes/train.py @@ -302,7 +302,7 @@ class Trainer: if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_rrdb_diffusion.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_unet_diffusion.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() diff --git a/codes/trainer/injectors/gaussian_diffusion_injector.py b/codes/trainer/injectors/gaussian_diffusion_injector.py index ce019937..ed6213da 100644 --- a/codes/trainer/injectors/gaussian_diffusion_injector.py +++ b/codes/trainer/injectors/gaussian_diffusion_injector.py @@ -41,7 +41,7 @@ class GaussianDiffusionInferenceInjector(Injector): self.generator = opt['generator'] self.output_shape = opt['output_shape'] opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule']) - opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt['beta_schedule']['num_diffusion_timesteps']]) # TODO: Figure out how these work and specify them differently. + opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt_get(opt, ['respaced_timestep_spacing'], opt['beta_schedule']['num_diffusion_timesteps'])]) # TODO: Figure out how these work and specify them differently. self.diffusion = SpacedDiffusion(**opt['diffusion_args']) self.model_input_keys = opt_get(opt, ['model_input_keys'], []) diff --git a/codes/trainer/steps.py b/codes/trainer/steps.py index 20533583..f18b1bab 100644 --- a/codes/trainer/steps.py +++ b/codes/trainer/steps.py @@ -169,6 +169,8 @@ class ConfigurableStep(Module): 'before' in inj.opt.keys() and self.env['step'] > inj.opt['before'] or \ 'every' in inj.opt.keys() and self.env['step'] % inj.opt['every'] != 0: continue + if 'no_accum' in inj.opt.keys() and grad_accum_step > 0: + continue injected = inj(local_state) local_state.update(injected) new_state.update(injected)