forked from mrq/DL-Art-School
Add a checkpointable discriminator
This commit is contained in:
parent
9ead2c0a08
commit
6a0d5f4813
|
@ -77,7 +77,6 @@ class Discriminator_VGG_128(nn.Module):
|
|||
out = self.linear2(fea)
|
||||
return out
|
||||
|
||||
|
||||
class Discriminator_VGG_128_GN(nn.Module):
|
||||
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
||||
def __init__(self, in_nc, nf, input_img_factor=1):
|
||||
|
@ -108,12 +107,12 @@ class Discriminator_VGG_128_GN(nn.Module):
|
|||
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
final_nf = nf * 8
|
||||
|
||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||
self.linear2 = nn.Linear(100, 1)
|
||||
|
||||
# activation function
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||
self.linear2 = nn.Linear(100, 1)
|
||||
|
||||
def forward(self, x):
|
||||
fea = self.lrelu(self.conv0_0(x))
|
||||
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
||||
|
@ -131,7 +130,63 @@ class Discriminator_VGG_128_GN(nn.Module):
|
|||
|
||||
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
||||
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
||||
|
||||
fea = fea.contiguous().view(fea.size(0), -1)
|
||||
fea = self.lrelu(self.linear1(fea))
|
||||
out = self.linear2(fea)
|
||||
return out
|
||||
|
||||
|
||||
from utils.util import checkpoint
|
||||
class Discriminator_VGG_128_GN_Checkpointed(nn.Module):
|
||||
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
||||
def __init__(self, in_nc, nf, input_img_factor=1):
|
||||
super(Discriminator_VGG_128_GN_Checkpointed, self).__init__()
|
||||
# [64, 128, 128]
|
||||
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||
self.bn0_1 = nn.GroupNorm(8, nf, affine=True)
|
||||
# [64, 64, 64]
|
||||
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
||||
self.bn1_0 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
||||
self.bn1_1 = nn.GroupNorm(8, nf * 2, affine=True)
|
||||
# [128, 32, 32]
|
||||
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
||||
self.bn2_0 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
||||
self.bn2_1 = nn.GroupNorm(8, nf * 4, affine=True)
|
||||
# [256, 16, 16]
|
||||
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
||||
self.bn3_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
self.bn3_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
# [512, 8, 8]
|
||||
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
||||
self.bn4_0 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||
self.bn4_1 = nn.GroupNorm(8, nf * 8, affine=True)
|
||||
final_nf = nf * 8
|
||||
|
||||
# activation function
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
self.body = nn.Sequential(self.conv0_0, self.lrelu,
|
||||
self.conv0_1, self.bn0_1, self.lrelu,
|
||||
self.conv1_0, self.bn1_0, self.lrelu,
|
||||
self.conv1_1, self.bn1_1, self.lrelu,
|
||||
self.conv2_0, self.bn2_0, self.lrelu,
|
||||
self.conv2_1, self.bn2_1, self.lrelu,
|
||||
self.conv3_0, self.bn3_0, self.lrelu,
|
||||
self.conv3_1, self.bn3_1, self.lrelu,
|
||||
self.conv4_0, self.bn4_0, self.lrelu,
|
||||
self.conv4_1, self.bn4_1, self.lrelu)
|
||||
|
||||
self.linear1 = nn.Linear(int(final_nf * 4 * input_img_factor * 4 * input_img_factor), 100)
|
||||
self.linear2 = nn.Linear(100, 1)
|
||||
|
||||
def forward(self, x):
|
||||
fea = checkpoint(self.body, x)
|
||||
fea = fea.contiguous().view(fea.size(0), -1)
|
||||
fea = self.lrelu(self.linear1(fea))
|
||||
out = self.linear2(fea)
|
||||
|
@ -504,4 +559,4 @@ class RefDiscriminatorVgg128(nn.Module):
|
|||
fea = self.lrelu(self.linear1(fea))
|
||||
|
||||
out = self.output_linears(torch.cat([fea, ref_vector], dim=1))
|
||||
return out
|
||||
return out
|
||||
|
|
|
@ -171,6 +171,8 @@ def define_D_net(opt_net, img_sz=None, wrap=False):
|
|||
netD = SRGAN_arch.Discriminator_VGG_128_GN(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
||||
if wrap:
|
||||
netD = GradDiscWrapper(netD)
|
||||
elif which_model == 'discriminator_vgg_128_gn_checkpointed':
|
||||
netD = SRGAN_arch.Discriminator_VGG_128_GN_Checkpointed(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
||||
elif which_model == 'discriminator_resnet':
|
||||
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
|
||||
elif which_model == 'discriminator_resnet_50':
|
||||
|
|
|
@ -95,7 +95,7 @@ class ProgressiveGeneratorInjector(Injector):
|
|||
chain_output.append(recurrent_hq)
|
||||
results_hq.append(hq_inputs[:, link.index])
|
||||
|
||||
if self.env['step'] % 1 == 0:
|
||||
if self.env['step'] % 50 == 0:
|
||||
self.produce_progressive_visual_debugs(chain_input, chain_output, debug_index)
|
||||
debug_index += 1
|
||||
results[self.hq_output_key] = results_hq
|
||||
|
|
Loading…
Reference in New Issue
Block a user