diff --git a/codes/models/gpt_voice/gpt_tts_hf.py b/codes/models/gpt_voice/gpt_tts_hf.py index 652b4cee..6c28dd25 100644 --- a/codes/models/gpt_voice/gpt_tts_hf.py +++ b/codes/models/gpt_voice/gpt_tts_hf.py @@ -1,3 +1,4 @@ +import random from time import time import torch @@ -23,7 +24,7 @@ class GptTtsHf(nn.Module): STOP_MEL_TOKEN = 8193 def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3, - checkpointing=True, mel_length_compression=1024): + checkpointing=True, mel_length_compression=1024, max_conditioning_length=44100//256): super().__init__() self.max_mel_tokens = max_mel_tokens self.max_symbols_per_phrase = max_symbols_per_phrase @@ -45,6 +46,7 @@ class GptTtsHf(nn.Module): self.final_norm = nn.LayerNorm(model_dim) self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS) self.mel_head = nn.Linear(model_dim, self.NUMBER_MEL_CODES) + self.max_conditioning_length = max_conditioning_length def build_aligned_inputs_and_targets(self, input, start_token, stop_token): @@ -87,12 +89,21 @@ class GptTtsHf(nn.Module): mel_targets: long tensor, (b,m) mel_lengths: long tensor, (b,) """ - # Set padding areas within MEL (currently it is coded with the MEL code for ) + # Set padding areas within MEL (currently it is coded with the MEL code for ). mel_lengths = wav_lengths // self.mel_length_compression for b in range(len(mel_lengths)): if mel_lengths[b] < mel_targets.shape[-1]: mel_targets[b, mel_lengths[b]:] = self.STOP_MEL_TOKEN + # Format conditioning inputs properly. + if len(cond_inputs.shape) == 3: + cond_inputs = cond_inputs.unsqueeze(1) # Format a single conditioning input as a set of {1} + if cond_inputs.shape[-1] > self.max_conditioning_length: + # Remember, that this doesn't necessarily mean that the conditioning inputs aren't mostly zero-padded, so + # skew trimming towards the front end of the clip. + rand_clip = random.randint(0, min(50, cond_inputs.shape[-1]-self.max_conditioning_length)) + cond_inputs = cond_inputs[:,:,:,rand_clip:rand_clip+self.max_conditioning_length] + text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.START_TEXT_TOKEN, self.STOP_TEXT_TOKEN) mel_inputs, mel_targets = self.build_aligned_inputs_and_targets(mel_targets, self.START_MEL_TOKEN, self.STOP_MEL_TOKEN) text_logits, mel_logits = self.get_logits(text_inputs, cond_inputs, mel_inputs, get_attns=return_attentions) @@ -103,8 +114,6 @@ class GptTtsHf(nn.Module): return loss_text.mean(), loss_mel.mean(), mel_logits def inference(self, text_inputs, cond_inputs, do_sample=False, temperature=1.0, num_beams=8, repetition_penalty=1): - #text_inputs, cond_inputs = torch.load("debug_text_and_cond.pt") - if not hasattr(self, 'inference_model'): self.inference_model = GPT2InferenceModel(self.gpt_config, self.gpt, self.mel_pos_embedding, self.final_norm, self.mel_head) @@ -138,6 +147,6 @@ def register_gpt_tts_hf(opt_net, opt): if __name__ == '__main__': gpt = GptTtsHf(model_dim=1024, heads=16) l = gpt(torch.randint(high=len(symbols), size=(2,200)), - torch.randn(2,2,80,800), + torch.randn(2,80,800), torch.randint(high=8192, size=(2,250)), torch.tensor([150*256,195*256]))