diff --git a/codes/models/gpt_voice/unified_voice.py b/codes/models/gpt_voice/unified_voice.py index 20254c8e..c892faba 100644 --- a/codes/models/gpt_voice/unified_voice.py +++ b/codes/models/gpt_voice/unified_voice.py @@ -143,6 +143,10 @@ class UnifiedGptVoice(nn.Module): mel_inputs: long tensor, (b,m) wav_lengths: long tensor, (b,) """ + assert self.max_symbols_per_phrase >= mel_inputs.shape[1] + assert self.max_symbols_per_phrase >= text_inputs.shape[1] + assert self.max_total_tokens >= mel_inputs.shape[1] + text_inputs.shape[1] + mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths) speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input) speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) @@ -168,6 +172,8 @@ class UnifiedGptVoice(nn.Module): Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided). """ + assert self.max_symbols_per_phrase >= text_inputs.shape[1] + speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input) speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1) @@ -181,6 +187,8 @@ class UnifiedGptVoice(nn.Module): """ Performs autoregressive modeling on only speech data. """ + assert self.max_symbols_per_phrase >= mel_inputs.shape[1] + mel_inputs = self.set_mel_padding(mel_inputs, wav_lengths) speech_conditioning_input = self.randomly_permute_conditioning_input(speech_conditioning_input) speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)